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Abstract We consider conforming finite element (FE) approximations for the
time-dependent Oberbeck-Boussinesq model with inf-sup stable pairs for velocity
and pressure and use a stabilization of the incompressibility constraint. In case of
dominant convection, a local projection stabilization (LPS) method in streamline
direction is considered both for velocity and temperature. For the arising nonlinear
semi-discrete problem, a stability and convergence analysis is given that does
not rely on a mesh width restriction. Numerical experiments validate a suitable
parameter choice within the bounds of the theoretical results.
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1 Introduction

In this paper, we consider non-isothermal incompressible flow using the Oberbeck-
Boussinesq approximation [1,2]. This model is applicable if only small temperature
differences occur and hence, the density is constant. The equations read:

∂tu− ν∆u+ (u · ∇)u+∇p+ βθg = fu in (0, T )×Ω,
∇ · u = 0 in (0, T )×Ω,

∂tθ − α∆θ + (u · ∇)θ = fθ in (0, T )×Ω
(1)
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together with initial and boundary conditions in a domain Ω ⊂ Rd, d ∈ {2, 3}, with
boundary ∂Ω. Here u : [0, T ] × Ω → Rd, p : [0, T ] × Ω → R and θ : [0, T ] × Ω → R
denote the unknown velocity, pressure and temperature fields for given viscosity
ν > 0, thermal diffusivity α > 0, thermal expansion coefficient β > 0, external
forces fu, fθ, gravitation g.

Discretizations using finite element methods (FEM) often suffer from spurious
oscillations in the numerical solution that arise for example due to dominating
convection, internal shear or near boundary layers or poor mass conservation.

The so-called grad-div stabilization is an additional element-wise stabilization
of the divergence constraint. It enhances the discrete mass conservation and re-
duces the effect of the pressure error on the velocity error (cf. [3,4]). It plays an
important role for robustness.

Local projection based stabilization (LPS) methods rely on the idea to separate
the discrete function spaces into small resolved and large resolved scales and
to add stabilization terms only on the small scales. In [5], LPS methods are
analyzed for the stationary Oseen problem, where an additional compatibility
condition between the approximation and projection velocity ansatz spaces is
assumed. Thus, stability and error bounds of optimal order can be established.
Furthermore, suitable simplicial and quadrilateral ansatz spaces are suggested that
fulfill the compatibility condition. In the paper [6], the authors provide an overview
regarding stabilized finite element methods for the Oseen problem, in particular
for local projection stabilization methods using inf-sup stable pairs. The unified
representation gives an overview over suitable ansatz spaces including parameter
design.

In [7] and [8], conforming finite element approximations of the time-dependent
Oseen and Navier-Stokes problems with inf-sup stable approximation of velocity
and pressure are considered. For handling the case of high Reynolds numbers,
local projection with streamline upwinding (LPS SU) and grad-div stabilizations
are applied and stability and convergence are shown. For general LPS variants, a
local restriction of the mesh width is required to obtain methods of (quasi-)optimal
order; this can be circumvented by using the compatibility condition from [5]. The
positive effect of additional element-wise stabilization of the divergence constraint
becomes apparent in the analysis as well as in the numerical experiments. Recent
results from [9] for the time-dependent Oseen problem reinforce the benefits and
stabilizing effects of grad-div stabilization for inf-sup stable mixed finite elements.
The authors show that the Galerkin approximations can be stabilized by adding
only grad-div stabilization.

Early numerical analysis for thermally coupled flow can be found in [10,11,
12]. In [13,14], subgrid-scale modeling for turbulent temperature dependent flow
is considered. Since local projection and grad-div stabilization have proven useful
for a large range of critical parameters, we want to apply them to the Oberbeck-
Boussinesq model (1) and assess their performance.

This paper is structured as follows:

In Section 2, we introduce a finite element semi-discretization for the Oberbeck-
Boussinesq model with grad-div and LPS SU stabilization and prove stability in
Section 3.

We extend the convergence analysis without compatibility condition from [7]
for the Oseen problem and [8] for the Navier-Stokes equations to the thermally
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coupled setting in Section 4. Here, we can circumvent a restriction of the mesh
width. The estimates rely on the discrete inf-sup stability of the velocity and
pressure ansatz spaces and the existence of a local interpolation operator pre-
serving the divergence as well as on relatively mild regularity assumptions for
the continuous solutions. The convective terms are treated carefully in order to
circumvent an exponential deterioration of the error in the limit of vanishing
diffusion. Furthermore, a pressure estimate is given using the discrete inf-sup
stability. The applicability of the proposed methods to possible finite element
settings is discussed and the design of stabilization parameters is studied.

The subsequent Section 5 is devoted to the numerical simulation of incompress-
ible non-isothermal flow. First, we present the time-discretization of the model
and state some analytical results. We use a method called pressure-correction pro-
jection method, which incorporates a backward differentiation formula of second
order. We validate the theoretical convergence results with respect to the mesh
width and study the influence of grad-div and LPS stabilization on the errors for
the parameter range suggested by the analysis. As a more realistic flow, Rayleigh-
Bénard convection is considered. The stabilization variants are applied and their
performance evaluated via suitable benchmarks.

2 The Discretized Oberbeck-Boussinesq Problem

In this section, we describe the model problem and the spatial semi-discretization
based on inf-sup stable interpolation of velocity and pressure together with grad-
div and local projection stabilization of the velocity and temperature gradients in
streamline direction.

2.1 The Oberbeck-Boussinesq model

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded polyhedral Lipschitz domain with boundary
∂Ω. For simplicity, we consider homogeneous Dirichlet boundary conditions for
velocity and temperature.

In the following, we consider Sobolev spaces Wm,p(Ω) with norm
‖ · ‖Wm,p(Ω),m ∈ N0, p ≥ 1. In particular, we have Lp(Ω) = W 0,p(Ω). For K ⊆ Ω,
we will write

‖u‖0 := ‖u‖L2(Ω), ‖u‖0,K := ‖u‖L2(K),

‖u‖∞ := ‖u‖L∞(Ω), ‖u‖∞,K := ‖u‖L∞(K).

Moreover, the closed subspaces W 1,2
0 (Ω), consisting of functions in W 1,2(Ω) with

zero trace on ∂Ω, and L2
0(Ω), consisting of L2-functions with zero mean in Ω, will

be used. The inner product in L2(K) will be denoted by (·, ·)K . In case of K = Ω,
we omit the index. With this, we define suitable function spaces:

V := [W 1,2
0 (Ω)]d, Q := L2

0(Ω), Θ := W 1,2
0 (Ω).

The variational formulation of (1) for fixed time t ∈ (0, T ) reads:
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Find (u(t), p(t), θ(t)) ∈ V ×Q×Θ such that it holds for all (v, q, ψ) ∈ V ×Q×Θ

(∂tu(t),v) + (ν∇u(t),∇v) + cu(u(t);u(t),v)

−(p(t),∇ · v) + (βθ(t)g,v) = (fu(t),v), (2)

(∇ · u(t), q) = 0,

(∂tθ(t), ψ) + (α∇θ(t),∇ψ) + cθ(u(t); θ(t), ψ) = (fθ(t), ψ) (3)

with

cu(w;u,v) :=
1

2

[
((w · ∇)u,v)− ((w · ∇)v,u)

]
,

cθ(w; θ, ψ) :=
1

2

[
((w · ∇)θ, ψ)− ((w · ∇)ψ, θ)

]
.

The skew-symmetric forms of the convective term cu and cθ are chosen
for conservation purposes. The forces are required to satisfy fu ∈
L2(0, T ; [L2(Ω)]d) ∩ C(0, T ; [L2(Ω)]d), fθ ∈ L2(0, T ;L2(Ω)) ∩ C(0, T ;L2(Ω))
and g ∈ L∞(0, T ; [L∞(Ω)]d) and the initial data is assumed to fulfill
u0 ∈ [L2(Ω)]d, θ0 ∈ L2(Ω). In this paper, we will additionally assume that
u ∈ L∞(0, T ; [W 1,∞(Ω)]d) and θ ∈ L∞(0, T ;W 1,∞(Ω)) which ensures uniqueness
of the solution.

2.2 The Stabilized Semi-Discrete Model

For the discretization in space, finite element methods are applied. For the Galerkin
formulation of (2)-(3), we approximate the solution spaces V , Q, Θ by finite
dimensional conforming subspaces Vh ⊂ V , Qh ⊂ Q, Θh ⊂ Θ. We impose a
discrete inf-sup condition for Vh and Qh throughout this paper: Let Vh ⊂ V and
Qh ⊂ Q be FE spaces satisfying a discrete inf-sup-condition

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
≥ βd > 0 (4)

with a constant βd independent of h.
In particular, due to the closed range theorem, the set of weakly solenoidal

functions

V div
h := {vh ∈ Vh | (qh,∇ · vh) = 0 ∀ qh ∈ Qh} (5)

does not only consist of the zero-function.
The semi-discrete Galerkin solution of problem (2)-(3) may suffer from spurious

oscillations due to poor mass conservation and/or dominating advection. The idea
of local projection stabilization (LPS) methods is to separate discrete function
spaces into small and large scales and to add stabilization terms only on small
scales. The grad-div stabilization is an additional element-wise stabilization of the
divergence constraint and enhances the discrete mass conservation.

Let {Th}, {Mh}, {Lh} be admissible and shape-regular families of non-
overlapping triangulations. {Mh} and {Lh} denote macro decompositions of Ω
for velocity and temperature, which represent the coarse scales in velocity and
temperature. In the two-level approach, the large scales are defined by using a
coarse mesh. The coarse mesh Mh is constructed such that each macro-element
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M ∈ Mh is the union of one or more neighboring elements T ∈ Th. In the
one-level LPS-approach, the coarse scales can be represented via a lower order
finite elements space on Th. Another way is to enrich the fine spaces. We can use
the same abstract framework by setting Mh = Th. Lh is constructed analogously
for the temperature.

There is nTh < ∞ such that all M and L are formed as a conjunction of at
most nTh cells T ∈ Th. Denote by hT , hM and hL the diameters of cells T ∈ Th,
M ∈Mh and L ∈ Lh, respectively. In addition, we require that there are constants
C1, C2 > 0 such that

hT ≤ hM ≤ C1hT , hT ≤ hL ≤ C2hT ∀ T ⊂M, T ⊂ L, M ∈Mh, L ∈ Lh.

We denote by Y uh , Y
θ
h ⊂ H

1(Ω)∩L∞(Ω) finite element spaces of functions that are
continuous on Th. We consider the conforming finite element spaces

Vh = [Y uh ]d ∩ V , Qh ⊂ Y
p
h ∩Q, Θh = Y θh ∩Θ

for velocity, pressure and temperature, where Y ph is a finite element space of func-

tions on Th. Moreover, let Du
Mh
⊂ [L∞(Ω)]d, DθLh ⊂ L

∞(Ω) denote discontinuous
finite element spaces on Mh for uh and on Lh for θh, respectively. We set

Du
M = {vh|M : vh ∈Du

Mh
}, DθL = {ψh|L : ψh ∈ DθLh}.

Later, we will write for combinations of finite element spaces

(Vh/D
u
M ) ∧Qh ∧ (Θh/D

θ
L).

If no LPS is applied, we omit the respective coarse space in the above notation.
For M ∈ Mh and L ∈ Lh, let πuM : [L2(M)]d → Du

M , πθL : L2(L) → DθL be
the orthogonal L2-projections onto the respective macro spaces. The so-called
fluctuation operators are defined by

κuM : [L2(M)]d → [L2(M)]d, κθL : L2(L)→ L2(L),

κuM := Id− πuM , κθL := Id− πθL.

For all macro elements M ∈ Mh and L ∈ Lh, we denote the element-wise
constant streamline directions of uh ∈ Vh by uM ∈ Rd and uL ∈ Rd. One possible
definition is

uM :=
1

|M |

∫
M

uh(x) dx, uL :=
1

|L|

∫
L

uh(x) dx. (6)

With the introduced notation, we can define the spatially discretized Oberbeck-
Boussinesq model with grad-div and LPS SU stabilization:
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Find (uh, ph, θh) : (0, T )→ Vh ×Qh ×Θh such that for all (vh, qh, ψh) ∈ Vh ×
Qh ×Θh:

(∂tuh,vh) + (ν∇uh,∇vh) + cu(uh;uh,vh)− (ph,∇ · vh) + (∇ · uh, qh)

+(βgθh,vh) + su(uh;uh,vh) + th(uh;uh,vh) = (fu,vh), (7)

(∂tθh, ψh) + (α∇θh,∇ψh) + cθ(uh; θh, ψh) + sθ(uh; θh, ψh) = (fθ, ψh) (8)

with the streamline-upwind (SUPG)-type stabilizations su, sθ and the grad-
div stabilization th according to

su(wh;u,v) :=
∑

M∈Mh

τuM (wM )(κuM ((wM · ∇)u), κuM ((wM · ∇)v))M ,

sθ(wh; θ, ψ) :=
∑
L∈Lh

τθL(wL)(κθL((wL · ∇)θ), κθL((wL · ∇)ψ))L,

th(wh;u,v) :=
∑

M∈Mh

γM (wM )(∇ · u,∇ · v)M

and non-negative stabilization parameters τuM , τθL, γM .

The set of stabilization parameters τuM (uh), τθL(uh), γM (uh) has to be determined
later on. Let the initial data be given as suitable interpolations of the continuous
initial values in the respective finite element spaces as

uh(0) = juu0 =: uh,0 ∈ Vh ⊂ [L2(Ω)]d, θh(0) = jθθ0 =: θh,0 ∈ Θh ⊂ L2(Ω),

where (ju, jθ) : V ×Θ → Vh ×Θh denote interpolation operators. We remark that
for solenoidal u0, we can find an interpolation operator ju such that uh,0 ∈ V div

h

(cf. [15]).

We point out that due to the discrete inf-sup condition, we can search for
(uh, ph, θh) : (0, T )→ V div

h ×Qh ×Θh in (7)-(8) equivalently.

3 Stability Analysis

We address the question regarding the existence of a semi-discrete solution of
(7)-(8). This is obtained via a stability result for uh ∈ V div

h and θh ∈ Θh; it
yields control over the kinetic energy and dissipation. The definition of the mesh-
dependent expressions below is motivated by symmetric testing in (7)-(8). For
v ∈ V and θ ∈ Θ, we define

|||v|||2LPS := ν‖∇v‖20 + su(uh;v,v) + th(uh;v,v),

|[θ]|2LPS := α‖∇θ‖20 + sθ(uh; θ, θ),

‖v‖2L2(0,T ;LPS) :=

∫ T

0

|||v(t)|||2LPS dt,

‖θ‖2L2(0,T ;LPS) :=

∫ T

0

|[θ(t)]|2LPS dt.

The following result states the desired stability.
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Theorem 1 Assume (uh, ph, θh) ∈ V div
h ×Qh×Θh is a solution of (7)-(8) with initial

data uh,0 ∈ [L2(Ω)]d, θh,0 ∈ L2(Ω). For 0 ≤ t ≤ T , we obtain

‖θh‖L∞(0,t;L2(Ω)) ≤ ‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω)) =: Cθ(T, θh,0, fθ),

‖uh‖L∞(0,t;L2(Ω)) ≤ ‖uh,0‖0 + ‖fu‖L1(0,T ;L2(Ω))

+ β‖g‖L1(0,T ;L∞(Ω))

(
‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω))

)
=: Cu(T,uh,0, θh,0,fu, fθ),

‖θh‖L2(0,t;LPS) ≤ Cθ(T, θh,0, fθ),

‖uh‖L2(0,t;LPS) ≤ Cu(T,uh,0, θh,0,fu, fθ).

Proof Let us start with the first claim for the temperature. Testing with ψh = θh ∈
Θh in (8) gives

1

2

d

dt
‖θh‖20 + |[θh]|2LPS = (∂tθh, θh) + α‖∇θh‖2 + sθ(uh; θh, θh) = (fθ, θh). (9)

Due to sθ(uh; θh, θh) ≥ 0, it follows

‖θh‖0
d

dt
‖θh‖0 =

1

2

d

dt
‖θh‖20 ≤ ‖fθ‖0‖θh‖0 ⇒ d

dt
‖θh‖0 ≤ ‖fθ‖0.

Integration in time leads to

‖θh(t)‖0 ≤ ‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω)) = Cθ(T, θh,0, fθ). (10)

For the velocity, we test with (uh, 0) ∈ V div
h ×Qh in (7)

1

2

d

dt
‖uh‖20 + |||uh|||2LPS

= (∂tuh,uh) + (ν∇uh,∇uh) + su(uh;uh,uh) + th(uh;uh,uh) (11)

= (fu − βgθh,uh).

We obtain

‖uh‖0
d

dt
‖uh‖0 =

1

2

d

dt
‖uh‖20 ≤ (‖fu‖0 + β‖g‖∞‖θh‖0) ‖uh‖0.

Hence, d
dt‖uh‖0 ≤ ‖fu‖0 + β‖g‖∞‖θh‖0. Integration in time and using stability of

the temperature (10) give:

‖uh(t)‖0 ≤ ‖uh,0‖0 + ‖fu‖L1(0,t;L2(Ω))

+ β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

≤ ‖uh,0‖0 + ‖fu‖L1(0,T ;L2(Ω))

+ β‖g‖L1(0,T ;L∞(Ω))

(
‖θh,0‖0 + ‖fθ‖L1(0,T ;L2(Ω))

)
= Cu(T,uh,0, θh,0,fu, fθ)

(12)

for all t ∈ [0, T ]. In order to estimate the diffusive and stabilization terms, we go
back to (9), integrate in time and apply (10):∫ t

0

|[θh(τ)]|2LPS dτ ≤
∫ t

0

‖fθ(τ)‖0‖θh(τ)‖0 dτ +
1

2
‖θh,0‖20
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≤ ‖θh‖L∞(0,t;L2(Ω))‖fθ‖L1(0,t;L2(Ω)) +
1

2
‖θh,0‖20 ≤ Cθ(T, θh,0, fθ)2.

The analogous procedure for uh, starting from (11) and using (12), yields:∫ t

0

|||uh(τ)|||2LPS dτ ≤
∫ t

0

‖fu(τ)− βgθh(τ)‖0‖uh(τ)‖0 dτ +
1

2
‖uh,0‖20

≤ ‖uh‖L∞(0,t;L2(Ω))

(
‖fu‖L1(0,t;L2(Ω))

+ β‖g‖L1(0,t;L∞(Ω))‖θh‖L∞(0,t;L2(Ω))

)
+

1

2
‖uh,0‖20

≤ Cu(T,uh,0, θh,0,fu, fθ)
2.

Remark 1 The discrete inf-sup stability yields a stability estimate of the pressure
as well. The above theorem gives us existence of the semi-discrete quantities due
to the generalized Peano Theorem. If we assume Lipschitz continuity in time for
fu, fθ and g, the Picard-Lindelöf Theorem yields uniqueness of the solution.

4 Quasi-Optimal Semi-Discrete Error Estimates

In this section, we derive quasi-optimal error estimates in the finite element setting
introduced above.

For the analysis, we introduce a decomposition of the error into a discretization
and a consistency error. Let (ju, jp, jθ) : V × Q × Θ → Vh × Qh × Θh denote
interpolation operators. We introduce

ξu,h := u− uh, ξp,h := p− ph, ξθ,h := θ − θh,

ηu,h := u− juu, ηp,h := p− jpp, ηθ,h := θ − jθθ,

eu,h := juu− uh, ep,h := jpp− ph, eθ,h := jθθ − θh.

(13)

Indeed, the semi-discrete errors are decomposed as ξu,h = ηu,h + eu,h,
ξp,h = ηp,h + ep,h and ξθ,h = ηθ,h + eθ,h.

4.1 Assumptions

For the semi-discrete error analysis, we need the following assumptions for the
finite element spaces and stabilization parameters.

Assumption 1 (Interpolation operators) Assume that for integers ku ≥ 1, kp ≥
1, kθ ≥ 1, there are bounded linear interpolation operators ju : V → Vh preserving the

divergence and jp : Q → Qh such that for all M ∈ Mh, for all w ∈ V ∩ [W lu,2(Ω)]d

with 1 ≤ lu ≤ ku + 1:

‖w − juw‖0,M + hM‖∇(w − juw)‖0,M ≤ ChluM‖w‖W lu,2(ωM ) (14)

and for all q ∈ Q ∩W lp,2(Ω) with 1 ≤ lp ≤ kp + 1:

‖q − jpq‖0,M + hM‖∇(q − jpq)‖0,M ≤ Ch
lp
M‖q‖W lp,2(ωM ) (15)
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on a suitable patch ωM ⊇M . Let for all M ∈Mh

‖v − juv‖∞,M ≤ ChM |v|W 1,∞(ωM ) ∀v ∈ [W 1,∞(Ω)]d. (16)

There is also a bounded linear interpolation operator jθ : Θ → Θh such that for all

L ∈ Lh and for all ψ ∈ Θ ∩W lθ,2(Ω) with 1 ≤ lθ ≤ kθ + 1:

‖ψ − jθψ‖0,L + hL‖∇(ψ − jθψ)‖0,L ≤ ChlθL ‖ψ‖W lθ,2(ωL)
(17)

on a suitable patch ωL ⊇ L. In addition, assume for all L ∈ Lh, M ∈Mh

‖ψ − jθψ‖∞,L ≤ ChL|ψ|W 1,∞(ωL) ∀ψ ∈W 1,∞(Ω),

‖ψ − jθψ‖∞,M ≤ ChM |ψ|W 1,∞(ωM ) ∀ψ ∈W 1,∞(Ω). (18)

The last property (18) for jθ holds due to the fact that all M ∈ Mh and L ∈ Lh
are formed as a conjunction of at most nTh < ∞ cells T ∈ Th. If the interpolator
is constructed such that the above estimates hold true on all T ∈ Th, the same
localized estimates hold on M ∈Mh and L ∈ Lh.

Assumption 2 (Local inverse inequality) Let the FE spaces [Y uh ]d for the velocity

and Y θh for the temperature satisfy the local inverse inequalities

‖∇wh‖0,M ≤ Ch−1
M ‖wh‖0,M ∀wh ∈ [Y uh ]d, M ∈Mh,

‖∇ψh‖0,L ≤ Ch−1
L ‖ψh‖0,L ∀ψh ∈ Y θh , L ∈ Lh.

Assumption 3 (Properties of the fluctuation operators) Assume that for

given integers ku, kθ ≥ 1, there are su ∈ {0, · · · , ku} and sθ ∈ {0, · · · , kθ} such that

the fluctuation operators κuM = Id − πuM and κθL = Id − πθL provide the following

approximation properties: There is C > 0 such that for w ∈ [W l,2(M)]d with

M ∈Mh, l = 0, . . . , su and for ψ ∈W r,2(L) with L ∈ Lh, r = 0, . . . , sθ, it holds

‖κuMw‖0,M ≤ Ch
l
M‖w‖W l,2(M), ‖κθLψ‖0,L ≤ Ch

r
L‖ψ‖W r,2(L).

Note that this is a property of the coarse spaces Du
M and DθL and is always true

for su = sθ = 0.

Furthermore, we need to satisfy some requirements on the stabilization param-
eters:

Assumption 4 (Parameter bounds) Assume that for all M ∈ Mh, E ∈ Eh and

L ∈ Lh:

max
M∈Mh

τuM (uM )|uM |2 ∈ L∞(0, T ), τuM (uM ) ≥ 0,

max
M∈Mh

(γM (uM ) + γM (uM )−1) ∈ L∞(0, T ), γM (uM ) ≥ 0,

max
L∈Lh

τθL(uL)|uL|2 ∈ L∞(0, T ), τθL(uL) ≥ 0.
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4.2 Velocity and Temperature Estimates

This gives rise to the following quasi-optimal semi-discrete error estimate for the
LPS-model.

Theorem 2 Let (u, p, θ) : [0, T ]→ V div ×Q×Θ, (uh, ph, θh) : [0, T ]→ V div
h ×Qh×

Θh be solutions of (2)-(3) and (7)-(8) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), ∂tu ∈ L2(0, T ; [L2(Ω)]d), p ∈ L2(0, T ;Q ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)), ∂tθ ∈ L2(0, T ;L2(Ω)), uh ∈ L∞(0, T ; [L∞(Ω)]d).

Let Assumptions 1, 2 and 4 be valid and uh(0) = juu0, θh(0) = jθθ0. We obtain for

eu,h = juu− uh, eθ,h = jθθ − θh of the LPS-method (7)-(8) for all 0 ≤ t ≤ T :

‖eu,h‖2L∞(0,t;L2(Ω)) + ‖eθ,h‖2L∞(0,t;L2(Ω))

+

∫ t

0

(
|||eu,h(τ)|||2LPS + |[eθ,h(τ)]|2LPS

)
dτ

.
∫ t

0

eCG,h(u,θ,uh)(t−τ)
{ ∑
M∈Mh

[
(ν + τuM |uM |

2 + γMd)‖∇ηu,h(τ)‖20,M

+ h−2
M ‖ηu,h(τ)‖20,M + ‖∂tηu,h(τ)‖20,M

+ τuM |uM |
2‖κuM (∇u)(τ)‖20,M + min

(
d

ν
,

1

γM

)
‖ηp,h(τ)‖20,M

]
+
∑
L∈Lh

[
‖∂tηθ,h(τ)‖20 +

(
h−2
L + β‖g‖∞,L

)
‖ηθ,h(τ)‖20,L

+
(
α+ τθL|uL|

2)‖∇ηθ,h(τ)‖20,L + τθL|uL|
2‖κθL(∇θ)(τ)‖20,L

]}
dτ

with (ηu,h, ηp,h, ηθ,h) = (u− juu, p− jpp, θ − jθθ) and the Gronwall constant

CG,h(u, θ,uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω) + ‖uh‖2∞

+ max
M∈Mh

{h2M |u|
2
W 1,∞(M)}+ max

M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+ max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}.

(19)

Proof We use the interpolation operators ju : V → Vh preserving the divergence,
jθ : Θ → Θh and jp : Q→ Qh from Assumption 1. Note that juu ∈ V div

h . Subtract-
ing (7) from (2), testing with (vh, qh) = (eu,h, 0) ∈ V div

h ×Qh and using (13) lead
to an error equation for the velocity:

0 = (∂t(u− uh), eu,h) + (ν∇(u− uh),∇eu,h)− (p− ph,∇ · eu,h) + cu(u;u, eu,h)

− cu(uh;uh, eu,h)− su(uh;uh, eu,h)− th(uh;uh, eu,h) + (βg(θ − θh), eu,h)

= (∂tηu,h, eu,h) + (∂teu,h, eu,h) + (ν∇ηu,h,∇eu,h) + (ν∇eu,h,∇eu,h)

− (ηp,h,∇ · eu,h) + cu(u;u, eu,h)− cu(uh;uh, eu,h) + su(uh; eu,h, eu,h)
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+ su(uh;ηu,h, eu,h)− su(uh;u, eu,h) + th(uh; eu,h, eu,h)− th(uh; juu, eu,h)

+ β(geθ,h, eu,h) + β(gηθ,h, eu,h),

where we used (ep,h,∇ · eu,h) = 0 due to eu,h ∈ V div
h . With the definition of

||| · |||LPS and the fact that (∇ · u, q) = 0 for all q ∈ L2(Ω), this implies

1

2
∂t‖eu,h‖20 + |||eu,h|||2LPS

= −(∂tηu,h, eu,h)− ν(∇ηu,h,∇eu,h) + (ηp,h,∇ · eu,h) + cu(uh;uh, eu,h)

− cu(u;u, eu,h)− su(uh;ηu,h, eu,h)− th(uh;ηu,h, eu,h)

+ su(uh;u, eu,h)− β(geθ,h, eu,h)− β(gηθ,h, eu,h).

The right-hand side terms are bounded as:

−(∂tηu,h, eu,h) ≤ ‖∂tηu,h‖0‖eu,h‖0 ≤
1

4
‖∂tηu,h‖

2
0 + ‖eu,h‖20,

−ν(∇ηu,h,∇eu,h) ≤
√
ν‖∇ηu,h‖0|||eu,h|||LPS ,

(ηp,h,∇ · eu,h) ≤
( ∑
M∈Mh

min
(
d

ν
,

1

γM

)
‖ηp,h‖20,M

)1/2
|||eu,h|||LPS ,

−su(uh;ηu,h, eu,h) ≤
( ∑
M∈Mh

τuM |uM |
2‖∇ηu,h‖

2
0,M

)1/2
|||eu,h|||LPS ,

−th(uh;ηu,h, eu,h) ≤
( ∑
M∈Mh

γMd‖∇ηu,h‖
2
0,M

)1/2
|||eu,h|||LPS ,

su(uh;u, eu,h) ≤
( ∑
M∈Mh

τuM |uM |
2‖κuM (∇u)‖20,M

)1/2
|||eu,h|||LPS ,

|β(geθ,h, eu,h)| ≤ 1

4
β‖g‖∞‖eu,h‖20 + β‖g‖∞‖eθ,h‖20

|β(gηθ,h, eu,h)| ≤ 3

4
β‖g‖∞‖eu,h‖20 +

1

3
β‖g‖∞‖ηθ,h‖20.

Therefore,

1

2
∂t‖eu,h‖20 + |||eu,h|||2LPS

≤ 1

4
‖∂tηu,h‖

2
0 + ‖eu,h‖20 + cu(uh;uh, eu,h)− cu(u;u, eu,h)

+

[
√
ν‖∇ηu,h‖0 +

( ∑
M∈Mh

τuM |uM |
2‖∇ηu,h‖

2
0,M

)1/2
+
( ∑
M∈Mh

γMd‖∇ηu,h‖
2
0,M

)1/2
+
( ∑
M∈Mh

min
(
d

ν
,

1

γM

)
‖ηp,h‖20,M

)1/2
+
( ∑
M∈Mh

τuM |uM |
2‖κuM (∇u)‖20,M

)1/2]
|||eu,h|||LPS

+ β‖g‖∞
(
‖eθ,h‖20 + ‖eu,h‖20

)
+
β‖g‖∞

3
‖ηθ,h‖20
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and thus via Young’s inequality

1

2
∂t‖eu,h‖20 + (1− 2ε)|||eu,h|||2LPS

≤ 1

4
‖∂tηu,h‖

2
0 + ‖eu,h‖20 +

[
cu(uh;uh, eu,h)− cu(u;u, eu,h)

]
+

5

8ε

∑
M∈Mh

[(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h‖

2
0,M

+ min
(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τuM |uM |

2‖κuM (∇u)‖20,M
]

+ β‖g‖∞
(
‖eθ,h‖20 + ‖eu,h‖20

)
+
β‖g‖∞

3
‖ηθ,h‖20.

(20)

Lemma 1 yields for the convective terms:

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M + 3ε|||ηu,h|||

2
LPS + 3ε|||eu,h|||2LPS

+

[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2M |u|
2
W 1,∞(M)}+

C

ε
max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ ε‖uh‖2∞

]
‖eu,h‖20

We incorporate this into (20) and obtain with a constant C independent of the
problem parameters, hM , hL, the solutions and ε

1

2
∂t‖eu,h‖20 + (1− 5ε)|||eu,h|||2LPS

≤ 1

4
‖∂tηu,h‖

2
0 +

C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M

+

[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh

{h2M |u|
2
W 1,∞(M)}

+
C

ε
max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ ε‖uh‖2∞

]
‖eu,h‖20

+
C

ε

∑
M∈Mh

[(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h‖

2
0,M

+ min
(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τuM |uM |

2‖κuM (∇u)‖20,M

]
+ β‖g‖∞‖eθ,h‖20 + Cβ‖g‖∞‖ηθ,h‖20.

(21)

Now, subtracting (8) from (3) with ψh = eθ,h ∈ Θh as a test function leads to

1

2
∂t‖eθ,h‖20 + |[eθ,h]|2LPS
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= −(∂tηθ,h, eθ,h)− α(∇ηθ,h,∇eθ,h) + cθ(uh; θh, eθ,h)

− cθ(u; θ, eθ,h)− sθ(uh; ηθ,h, eθ,h) + sθ(uh; θ, eθ,h).

With estimates for the interpolation terms and Young’s inequality, we have

1

2
∂t‖eθ,h‖20 + (1− 2ε)|[eθ,h]|2LPS

≤ 1

4
‖∂tηθ,h‖20 + ‖eθ,h‖20 + cθ(uh; θh, eθ,h)− cθ(u; θ, eθ,h)

+
3

8ε

∑
L∈Lh

[(
α+ τθL|uL|

2)‖∇ηθ,h‖20,L + τθL|uL|
2‖κθL(∇θ)‖20,L

]
. (22)

The combination of (22) and the difference of the convective terms in the Fourier
equation according to Lemma 1 with a constant C independent of the problem
parameters, hM , hL, the solutions and ε gives

1

2
∂t‖eθ,h‖20 + (1− 8ε)|[eθ,h]|2LPS

≤ 1

4
‖∂tηθ,h‖20 +

C

ε

∑
L∈Lh

1

h2L
‖ηθ,h‖20,L +

C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M

+ 3ε|||ηu,h|||
2
LPS + 3ε|||eu,h|||2LPS +

1

2
|θ|W 1,∞(Ω)‖eu,h‖

2
0

+

[
1 +

1

2
|θ|W 1,∞(Ω) + ε‖uh‖2∞ + ε max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+
C

ε
max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+
C

ε

∑
L∈Lh

[(
α+ τθL|uL|

2)‖∇ηθ,h‖20,L + τθL|uL|
2‖κθL(∇θ)‖20,L

]
.

(23)

Note that

|||ηu,h|||
2
LPS ≤

∑
M∈Mh

(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h‖

2
0,M .

Adding (21) and (23) results in

1

2
∂t‖eu,h‖20 + (1− 8ε)|||eu,h|||2LPS +

1

2
∂t‖eθ,h‖20 + (1− 8ε)|[eθ,h]|2LPS

≤ 1

4
‖∂tηu,h‖

2
0 +

1

4
‖∂tηθ,h‖20 +

C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + ε max

M∈Mh

{h2M |u|
2
W 1,∞(M)}

+
C

ε
max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+ ε‖uh‖2∞

+
C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+

1

2
|θ|W 1,∞(Ω)

]
‖eu,h‖20

+

(
C

ε
+ Cε

) ∑
M∈Mh

(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h‖

2
0,M
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+
C

ε

∑
M∈Mh

[
min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τuM |uM |

2‖κuM (∇u)‖20,M
]

+
∑
L∈Lh

(
C

ε

1

h2L
+ Cβ‖g‖∞,L

)
‖ηθ,h‖20,L

+

[
1 +

1

2
|θ|W 1,∞(Ω) + ε‖uh‖2∞ + β‖g‖∞ + ε max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+
C

ε
max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+
C

ε

∑
L∈Lh

[(
α+ τθL|uL|

2)‖∇ηθ,h‖20,L + τθL|uL|
2‖κθL(∇θ)‖20,L

]
.

We choose ε = 1
18 and get (where . indicates that the left-hand side is smaller or

equal than a generic constant times the right-hand side)

∂t‖eu,h‖20 + |||(eu,h, ep,h)|||2LPS + ∂t‖eθ,h‖20 + |[eθ,h]|2LPS

. ‖∂tηu,h‖
2
0 + ‖∂tηθ,h‖20 +

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M

+
[
1 + β‖g‖∞ + |u|W 1,∞(Ω) + max

M∈Mh

{h2M |u|
2
W 1,∞(M)}+ ‖uh‖2∞

+ max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ |θ|W 1,∞(Ω)

]
‖eu,h‖20

+
∑

M∈Mh

(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h‖

2
0,M

+
∑

M∈Mh

[
min

(
d

ν
,

1

γM

)
‖ηp,h‖20,M + τuM |uM |

2‖κuM (∇u)‖20,M
]

+
∑
L∈Lh

(
1

h2L
+ β‖g‖∞,L

)
‖ηθ,h‖20,L

+

[
1 + |θ|W 1,∞(Ω) + ‖uh‖2∞ + β‖g‖∞ + max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+ max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

]
‖eθ,h‖20

+
∑
L∈Lh

[(
α+ τθL|uL|

2)‖∇ηθ,h‖20,L + τθL|uL|
2‖κθL(∇θ)‖20,L

]
.

We require that all the terms on the right-hand side are integrable in time.
This holds due to the regularity assumptions on u and θ, Assumption 4, g ∈
L∞(0, T ; [L∞(Ω)]d) and the fact that the fluctuation operators are bounded. Ap-
plication of Gronwall’s Lemma for ‖(eu,h, eθ,h)‖20 := ‖eu,h‖20 + ‖eθ,h‖20 defined in
Theorem 2 gives the claim since the initial error (eu,h, eθ,h)(0) vanishes.

Corollary 1 Consider a solution (u, p, θ) : [0, T ]→ V div×Q×Θ of (2)-(3) satisfying

u ∈ L∞(0, T ; [W 1,∞(Ω)]d) ∩ L2(0, T ; [W ku+1,2(Ω)]d),
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∂tu ∈ L2(0, T ; [W ku,2(Ω)]d),

p ∈ L2(0, T ;W kp+1,2(Ω) ∩ C(Ω)),

θ ∈ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;W kθ+1,2(Ω)),

∂tθ ∈ L2(0, T ;W kθ,2(Ω))

and a solution (uh, ph, θh) : [0, T ] → V div
h × Qh × Θh of (7)-(8) satisfying uh ∈

L∞(0, T ; [L∞(Ω)]d). Let Assumptions 1 – 4 be valid as well as uh(0) = juu0, θh(0) =
jθθ0 hold. For 0 ≤ t ≤ T , we obtain the estimate for the semi-discrete error ξu,h =
u− uh, ξθ,h = θ − θh:

‖ξu,h‖
2
L∞(0,t;L2(Ω)) + ‖ξθ,h‖2L∞(0,t;L2(Ω))

+

∫ t

0

(
|||ξu,h(τ)|||2LPS + |[ξθ,h(τ)]|2LPS

)
dτ

.
∫ t

0

eCG,h(u,θ)(t−τ)
{ ∑
M∈Mh

h
2(kp+1)
M min

(
d

ν
,

1

γM

)
‖p(τ)‖2Wkp+1,2(ωM )

+
∑

M∈Mh

h2kuM

[
(1 + ν + τuM |uM |

2 + γMd)‖u(τ)‖2Wku+1,2(ωM ) (24)

+ ‖∂tu(τ)‖2Wku,2(ωM ) + τuM |uM |
2h

2(su−ku)
M ‖u(τ)‖2W su+1,2(ωM )

]
+
∑
L∈Lh

h2kθL

[
‖∂tθ(τ)‖2Wkθ,2(ωL)

+ τθL|uL|
2h

2(sθ−kθ)
L ‖θ(τ)‖2W sθ+1,2(ωL)

]

+
(

1 + h2Lβ‖g‖∞,L + α+ τθL|uL|
2
)
‖θ(τ)‖2Wkθ+1,2(ωL)

}
dτ

with su ∈ {0, · · · , ku}, sθ ∈ {0, · · · , kθ} and a Gronwall constant as defined in Theorem

2.

Proof We split the semi-discrete error as

ξu,h = ηu,h + eu,h, ξθ,h = ηθ,h + eθ,h, ξp,h = ηp,h + ep,h

and use the triangle inequality in order to estimate the approximation and con-
sistency errors separately. The interpolation results in V div

h ×Qh ×Θh, according
to Assumption 1, are applied to Theorem 2. Further, we take advantage of the
approximation properties of the fluctuation operators from Assumption 3 with
su ∈ {0, · · · , ku}, sθ ∈ {0, · · · , kθ}. This provides a bound for the consistency error
in the following way for all 0 ≤ τ ≤ t ≤ T∑

M∈Mh

(ν + τuM |uM |
2 + dγM )‖∇ηu,h(τ)‖20,M

+
∑

M∈Mh

h−2
M ‖ηu,h(τ)‖20,M +

∑
M∈Mh

min
(
d

ν
,

1

γM

)
‖ηp,h(τ)‖20,M

+
∑
L∈Lh

(
1

h2L
+ β‖g‖∞,L

)
‖ηθ,h(τ)‖20,L +

(
α+ τθL|uL|

2)‖∇ηθ,h(τ)‖20,L
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≤ C
∑

M∈Mh

h2kuM

(
1 + τuM |uM |

2 + dγM

)
‖u(τ)‖2Wku+1,2(ωM )

+ C
∑

M∈Mh

h
2(kp+1)
M min

(
d

ν
,

1

γM

)
‖p(τ)‖2Wkp+1,2(ωM )

+
∑
L∈Lh

h2kθL

(
1 + h2Lβ‖g‖∞,L + α+ τθL|uL|

2
)
‖θ(τ)‖2Wkθ+1,2(ωL)

.

Furthermore, it holds

‖∂tηu,h(τ)‖20 ≤ C
∑

M∈Mh

h2kuM ‖∂tu(τ)‖2Wku,2(ωM ),

τuM |uM |
2‖κuM (∇u(τ))‖20,M ≤ C

∑
M∈Mh

τuM |uM |
2h2suM ‖u‖2W su+1,2(ωM ),

‖∂tηθ,h(τ)‖20 ≤ C
∑
L∈Lh

h2kθL ‖∂tθ(τ)‖2Wkθ,2(ωL)
,

τθL|uL|
2‖κθL(∇θ(τ))‖20,L ≤ C

∑
L∈Lh

τθL|uL|
2h2sθL ‖θ(τ)‖2W sθ+1,2(ωL)

.

For the interpolation errors, we exploit the approximation properties from As-
sumption 1:

‖ηu,h(τ)‖20 ≤ C
∑

M∈Mh

h
2(ku+1)
M ‖u(τ)‖2Wku+1,2(ωM ),

‖ηθ,h‖20 ≤ C
∑
L∈Lh

h
2(kθ+1)
L ‖θ(τ)‖2Wkθ+1,2(ωL)

,

|||ηu,h(τ)|||2LPS≤
∑

M∈Mh

(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h(τ)‖20,M

≤ C
∑

M∈Mh

h2kuM

(
ν + τuM |uM |

2 + γMd
)
‖u(τ)‖2Wku+1,2(ωM ),

|[ηθ,h(τ)]|2LPS ≤
∑
L∈Lh

(
α+ τθL|uL|

2)‖∇ηθ,h‖20,M
≤ C

∑
L∈Lh

h2kθL

(
α+ τθL|uL|

2)‖θ(τ)‖2Wkθ+1,2(ωL)
.

The combination gives the claim.

Remark 2 Note that the above results do not provide a priori bounds since the
Gronwall constant depends on ‖uh‖∞. This allows us to prevent mesh width
restrictions of the form

ReM =
hM‖uh‖∞,M

ν
≤ 1√

ν
, PeL =

hL‖uh‖∞,L
α

≤ 1√
α
,

similar to the ones obtained in [8].
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Remark 3 Provided a certain compatibility condition between fine and coarse
ansatz spaces holds true (according to [5]), we can improve the above results
similarly to the consideration in [8]. In particular, we obtain

‖eu,h‖2L∞(0,t;L2(Ω)) + ‖eθ,h‖2L∞(0,t;L2(Ω))

+

∫ t

0

(
|||eu,h(τ)|||2LPS + |[eθ,h(τ)]|2LPS

)
dτ

≤ C
∫ t

0

eC
′
G,h(u,θ,uh)(t−τ)

{ ∑
M∈Mh

min
(
d

ν
,

1

γM

)
‖ηp,h(τ)‖20,M

+
∑

M∈Mh

[(
ν + τuM |uM |

2 + γMd
)
‖∇ηu,h(τ)‖20,M +

( 1

h2M
+

1

τuM

)
‖ηu,h(τ)‖20,M

+ ‖∂tηu,h(τ)‖20,M + τuM |uM |
2‖κuM (∇u)(τ)‖20,M

]
+
∑
L∈Lh

[(
α+ τθL|uL|

2)‖∇ηθ,h(τ)‖20,L +
( 1

τθL
+ β‖g‖∞,L

)
‖ηθ,h(τ)‖20,L

+ τθL|uL|
2‖κθL(∇θ)(τ)‖20,L + ‖∂tηθ,h(τ)‖20,L

]}
dτ

with Gronwall constant

C′G(u, θ,uh) = 1 + β‖g‖∞ + |u|W 1,∞(Ω) + |θ|W 1,∞(Ω)

+ max
M∈Mh

{h2M |u|
2
W 1,∞(M)}+ max

M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+ max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+ max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

+ max
M∈Mh

{
τuM |uh|

2
W 1,∞(M)

}
+ max
L∈Lh

{
τθL|uh|

2
W 1,∞(L)

}
.

For more details, compare with [16].

Remark 4 From the above estimates, we can derive an error estimate for the
pressure via the discrete inf-sup condition. If

u ∈ L∞(0, T ; [W 1,∞(Ω)]d), uh ∈ L∞(0, T ; [L∞(Ω)]d),

we obtain the estimate for the semi-discrete pressure error ξp,h = p − ph for 0 ≤
t ≤ T

‖ξp,h‖2L2(0,t;L2(Ω))

≤ C

β2
d

{
‖∂tξu,h‖

2
L2(0,t;H−1(Ω)) + β2‖g‖2L∞(0,t;L∞(Ω))‖ξθ,h‖

2
L2(0,t;L2(Ω))

+
(
‖u‖2L2(0,t;L∞(Ω)) + ‖uh‖2L2(0,t;L∞(Ω))

)
‖ξu,h‖

2
L∞(0,t;L2(Ω))

+

∫ t

0

(
ν + max

M∈Mh

{γ−1
M ‖uh‖

2
∞,M}
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+ max
M∈Mh

{τuM |uM |
2}+ max

M∈Mh

{γMd}
)
|||ξu,h|||

2
LPS dτ

+

∫ t

0

max
M∈Mh

{τuM |uM |
2}

∑
M∈Mh

τuM |uM |
2‖κuM (∇u)‖20,Mdτ

}

with a constant C > 0 independent of the problem parameters, hM , hL and
the solutions. We point out that the estimate is not optimal due to the term
‖∂tξu,h‖2L2(0,t;H−1(Ω)). In [9], an improved result for the Navier-Stokes equations
is obtained.

4.3 Suitable Finite Element Spaces

We address the question of suitable settings for our analysis in Theorem 2 and
Corollary 1. First, let us introduce some notation.

For a simplex T ∈ Th or a quadrilateral/hexahedron T in Rd, let T̂ be the
reference unit simplex or the unit cube (−1, 1)d. We are interested in so-called
mapped finite elements, that are constructed as transformations from the reference
element. Denote by FT : T̂ → T the reference mapping. For simplices T , FT is affine
and bijective. In case of quadrilaterals/hexahedra, FT is a multi-linear mapping
from T̂ to arbitrary quadrilaterals/hexahedra. Henceforth, we require that FT is
bijective and its Jacobian is bounded for a family of triangulations according to

∃ c1, c2 > 0: c1h
d
T ≤ |detDFT (x̂)| ≤ c2hdT ∀ x̂ ∈ T̂ (25)

with constants c1, c2 > 0 independent of the cell diameter hT .

Let P̂l and Q̂l with l ∈ N0 be the set of polynomials of degree ≤ l and of
polynomials of degree ≤ l in each variable separately. Moreover, we set

Rl(T̂ ) :=

{
Pl(T̂ ) on simplices T̂

Ql(T̂ ) on quadrilaterals/hexahedra T̂ .

Bubble-enriched spaces are

P+
l (T̂ ) := Pl(T̂ ) + bT̂ · Pl−2(T̂ ), Q+

l (T̂ ) := Ql(T̂ ) + ψ · span{x̂r−1
i , i = 1, . . . , d}

with polynomial bubble function bT̂ :=
∏d
i=0 λ̂i ∈ P̂d+1 on the reference simplex T̂

with barycentric coordinates λ̂i and with d-quadratic function ψ(x̂) :=
∏d
i=1(1−x̂2i )

on the reference cube. Define

Yh,−l := {vh ∈ L2(Ω) : vh|T ◦ FT ∈ Rl(T̂ ) ∀T ∈ Th},

Yh,l := Yh,−l ∩W 1,2(Ω)

and bubble-enriched spaces Y +
h,±l

, analogously. For convenience, we write Vh = Rk
instead of Vh := [Yh,k]d ∩ V for the velocity (with obvious modifications for R+

k )
and similarly for pressure and temperature.
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The presented approach is applicable to many combinations of ansatz spaces.
The interpolation property from Assumption 1 and the discrete inf-sup condition
(4) hold for our finite element setting of Lagrangian elements

Vh = R(+)
ku

, Qh = R±(ku−1), Θh = R(+)
kΘ

with ku ≥ 2, kθ ≥ 2. It is shown in [15] that there exists a quasi-local interpolation
operator that preserves the discrete divergence and has the needed approximation
properties in Assumption 1 on simplicial isotropic meshes. It is argued in [15] that
the result can be easily extended to quadrilateral/hexahedral meshes and in this
case to ku = 2, d = 3.

In [6] (Table 1 and 2), fine and coarse discrete ansatz spaces are presented
that fulfill the approximation property of the fluctuation operators (Assumption
3). We summarize possible variants of the triples (Vh/D

u
M ) ∧Qh ∧ (Θh/D

θ
L) with

su ∈ {1, . . . , ku}, sθ ∈ {1, . . . , kθ}.

– One-level methods:
(Pku/Psu−1) ∧ Pku−1 ∧ (Pkθ/Psθ−1), (Qku/Qsu−1) ∧Qku−1 ∧ (Qkθ/Qsθ−1),
(P+
ku
/Psu−1)∧P−(ku−1) ∧ (P+

kθ
/Psθ−1), (Qku/Psu−1)∧P−(ku−1) ∧ (Qkθ/Psθ−1).

– Two-level methods (for the construction of the coarse space, see [5,6]):
(Pku/Psu−1) ∧ Pku−1 ∧ (Pkθ/Psθ−1), (Qku/Qsu−1) ∧Qku−1 ∧ (Qkθ/Qsθ−1),
(P+
ku
/Psu−1)∧P−(ku−1) ∧ (P+

kθ
/Psθ−1), (Qku/Psu−1)∧P−(ku−1) ∧ (Qkθ/Psθ−1).

4.4 Parameter Choice

The presented possibilities of finite element combinations result in a parameter
choice as

γM = γ0, 0 ≤ τuM (uM ) ≤ τu0
h
2(ku−su)
M

|uM |2
, 0 ≤ τθL(uL) ≤ τθ0

h
2(kθ−sθ)
L

|uL|2
(26)

for M ∈ Mh and L ∈ Lh, where γ0, τ
u
0 , τ

θ
0 = O(1) denote non-negative tuning

constants. With the parameter choice (26), Assumption 4 is satisfied. In these
possible settings, we can apply Theorem 2 and Corollary 1. We point out that in
order to get an optimal rate k in (24), one might want to choose

k := ku = kθ = kp + 1.

A choice of grad-div and LPS SU parameters as in (26) balances the terms in
the upper bound of the semi-discrete error (24). In addition, the Gronwall constant
(19) does not blow up for small ν if γM > 0. An h-independent γM (or at least
γM ≥ Ch) also diminishes the growth of the Gronwall constant with |u|W 1,∞(Ω)

and |θ|W 1,∞(Ω) and is therefore favorable. In case of uM = 0, we set τuM (uM ) = 0

and τθL(uL) = 0 if uL = 0 as the whole LPS terms vanish. In [6], similar bounds
for the Oseen problem are proposed: τuM |bM |

2 ≤ Chk−suM and γM ∼ 1.
Comparing the physical dimensions in the momentum equation (7) and the Fourier
equation (8), we obtain

[τuM (uM )]
m2

s4
= [su(uh;uh,uh)] =

[(
∂uh
∂t

,uh

)]
=
m2

s3



20 H. Dallmann, D. Arndt

[
τθL(uL)

]
K2

s2
= [sθ(uh; θh, θh)] =

[(
∂θh
∂t

, θh

)]
=
K2

s
.

This suggests a parameter design as

τθL(uL) ∼ hL/|uL|, τuM (uM ) ∼ hM/|uM |, (27)

that is within the above (theoretical) parameter bounds. We will consider this
choice in the numerical examples.
The design of the grad-div parameter set {γM}M is still an open problem, see
e.g. [17] for the Stokes problem. An equilibration argument in our analysis (24)
suggests

γM ∼ max
(

0;
‖p‖Wk,2(M)

‖u‖Wk+1,2(M)

− ν
)
. (28)

Indeed, in different flow examples, the choice (28) yields distinct γM : In case of
flow with fu ≡ 0, (u · ∇)u = ∂tu = 0 and −ν∆u + ∇p = 0 (Poiseuille flow),
we would choose γM = 0, as ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ ν. For the Taylor-Green
vortex with fu ≡ 0, one has ∂tu − ν∆u = 0 and (u · ∇)u+∇p = 0, thus leading
to ‖p‖Wk,2(Ω)/‖u‖Wk+1,2(Ω) ∼ 1. If ν is small, γM ∼ 1 follows. Unfortunately, (28)
is not a viable choice for γM in practice.
Especially in the advection dominated case, grad-div stabilization with γM > ν

has a regularizing effect. Furthermore, γM > ν is essential for the independence of
the Gronwall constant CG,h(u, θ) of ν. Corollary 1 and the above discussion clarify
that γM = O(1) is a reasonable compromise. Our numerical tests also confirm this.

5 Numerical Examples

In order to validate the analytical results, we need to discretize the semi-discrete
formulation in time as well. The method we choose is a splitting method called
rotational pressure-correction projection method, which is based on the backward
differentiation formula of second order (BDF2). This method has been proposed
by Timmermans [18] for the Navier-Stokes case and has been analyzed for the
linear Stokes model in [19].
With the constant time step size ∆t > 0, the scheme reads:

Find unht ∈ Vh such that for all vh ∈ Vh:(
3unht − 4un−1

ht + un−2
ht

2∆t
,vh

)
+ ν(∇unht,∇vh) + cu(unht;u

n
ht,vh)

+ th(unht;u
n
ht,vh) + su(unht;u

n
ht,vh)− (pn−1

ht ,∇ · vh) + β(g(tn)θn∗ht ,vh)

= (fu(tn),vh) +

(
7

3
pn−1
ht − 5

3
pn−2
ht +

1

3
pn−3
ht ,∇ · vh

)
, (29)

where θn∗ht := 2θn−1
ht − θn−2

ht is an extrapolation of second order of the temperature
θnht.

Find qnht ∈ Qh such that for all qh ∈ Qh:

(∇(pnht − p
n−1
ht ),∇qh) =

(
3∇ · unht

2∆t
, qh

)
. (30)
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Find θnht ∈ Θh such that for all ψh ∈ Θh:(
3θnht − 4θn−1

ht + θn−2
ht

2∆t
, ψh

)
+ α(∇θnht,∇ψh)

+ cθ(u
n
ht; θ

n
ht, ψh) + sθ(u

n
ht; θ

n
ht, ψh)

= (fθ(tn), ψh).

(31)

Using this scheme, we want to confirm the results obtained above numerically and
investigate suitable parameter choices for the stabilizations. Therefore, we first
consider an artificial example using the method of manufactured solution. Due
to the fact that we know the analytical solution, we can observe in which cases
we obtain the desired rates of convergence. In the second example, we consider
Rayleigh-Bénard convection in a cylinder. This problem is well-investigated and
we consider the influence of stabilization on typical benchmark quantities.

Remark 5 For the fully discrete quantities, one can show stability according to

‖uht‖2l∞(0,T ;L2(Ω)) + ‖uht‖2l2(0,T ;LPS) + (∆t)2‖∇pht‖2l∞(0,T ;L2(Ω))

+ ‖θht‖2l∞(0,T ;L2(Ω)) + ‖θht‖2l2(0,T ;LPS)

≤ C(u0
ht,u

1
ht, p

0
ht, p

1
ht, θ

0
ht, θ

1
ht, β, g,fu, fθ),

cf. [16]. We expect that the convergence results for the stabilized Navier-Stokes in
[20] can be extended to the Oberbeck-Boussinesq model easily due to the similarity
of the momentum and the Fourier equations and their weak coupling.

5.1 Traveling Wave

We consider a time dependent, two-dimensional solution of the Oberbeck-
Boussinesq equations (1) for different parameters ν, α, β > 0 in a box Ω = (0, 1)2

with t ∈ [0, 6 · 10−3]:

u(x, y, t) = (100, 0)T , p(x, y, t) = 0,

θ(x, y, t) = (1 + 3200αt)−1/2 exp

(
−
(

1

2
+ 100tx

)2(
1

800
+ 4αt

)−1
)

with g ≡ (0,−1)T and (time dependent) Dirichlet boundary conditions for u and θ.
The right-hand sides fu, fθ are calculated such that (u, p, θ) solves the equations.
Initially, the temperature peak is located at x = 1

2 and moves in x-direction until
it finally hits the wall at x = 1, t = 0.005 and is transported out of the domain.
Note that the movement of the peak is one-dimensional.

The mesh is randomly distorted by 1%; h denotes an average cell diameter. We
use Q2 ∧Q1 ∧ (Q2/Q1) or Q2 ∧Q1 ∧ (Q+

2 /Q1) elements for velocity, pressure and
fine and coarse temperature. Since only the temperature ansatz spaces are varied

here, we write Q(+)
2 /Q1 for convenience.

As presented in Figure 1, we obtain the expected order of convergence for
the LPS-error |||u − uh|||LPS + |[θ − θh]|LPS ∼ h2 even without stabilization.
Adding LPS stabilization for θ does not corrupt this result. Note that even a high
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Fig. 1: LPS-errors for different finite elements and choices of α and β with (a)
τθL = 0 and (b) τθL = h/‖uh‖∞,L, ν = 1

parameter β does not require any stabilization: Neither the discrete temperature
nor velocity or pressure fail to converge properly (not shown). In the interesting
case α = 10−3, the LPS-errors become very large in the unstabilized case. LPS
stabilization in combination with Q+

2 /Q1 elements for θh cures this situation
(Figure 1 (b)).

In the unstabilized case as well as in case of LPS SU with Q2/Q1 elements for
the temperature, the spurious oscillations of the discrete temperature cannot be
captured. These wiggles are directly visible in Figure 2, where θh(x, y = 0.5, t =
0.005) is plotted for x ∈ [0, 0.9]. The improvement becomes obvious if we use
enriched elements Q+

2 /Q1.

5.2 Rayleigh-Bénard convection

We consider Rayleigh-Bénard convection in a three-dimensional cylindrical domain

Ω :=

{
(x, y, z) ∈

(
− 1

2
,
1

2

)3 ∣∣∣√x2 + y2 ≤ 1

2
, |z| ≤ 1

2

}
with aspect ratio Γ = 1 for Prandtl number Pr = 0.786 and different Rayleigh
numbers 105 ≤ Ra ≤ 109. These critical parameters are defined by

Pr =
ν

α
Ra =

|g|β∆θrefL3
ref

να
.

In this testcase the gravitational acceleration g ≡ (0, 0,−1)T is (anti-)parallel
to the z-axis. The temperature is fixed by Dirichlet boundary conditions at the
(warm) bottom and (cold) top plate; the vertical wall is adiabatic with Neumann
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(a) (b)

Fig. 2: Plot over temperature at y = 0.5 (x ∈ [0, 0.9]) at time t = 0.005 with h =
1/16 in case of (a) Q2/Q1 elements for τθL = 0 (dotted line and for τθL = ‖uh‖−2

∞,L
(solid line), (b) Q+

2 /Q1 elements for τθL = 0 (dotted line) and for τθL = ‖uh‖−2
∞,L

(solid line), (ν, α, β) = (1, 10−3, 1). The dotted and solid lines lie on top of each
other in (a)

boundary conditions ∂θ
∂n = 0. Homogeneous Dirichlet boundary data for the ve-

locity are prescribed. We use triangulations with N cells, where N ∈ {10 · 83, 10 ·
163, 10 · 323}, as well as a time step size ∆t = 0.1 for N = 10 · 83, ∆t = 0.05 for
N = 10 · 163 and ∆t = 0.01 for N = 10 · 323.

As a benchmark quantity, the Nusselt number Nu is used. With B := {(x, y) ∈
(−1

2 ,
1
2 )2 |

√
x2 + y2 ≤ 1

2}, the Nusselt number Nu at fixed z is calculated from the

vertical heat flux qz = uzθ−α∂θ∂z from the warm wall to the cold one by averaging
over B and in time:

Nu(z) = Γ
(
α|B|(T − t0) |θbottom − θtop|

)−1
∫ T

t0

∫
B

qz(x, y, z, t) dx dy dt

with a suitable interval [t0, T ]. It is well known that the time averaged Nusselt
number does not depend on z. In order to assess the quality of our simulations, we
compute the Nusselt number for different z ∈ {−0.5,−0.25, 0, 0.25, 0.5}, where the
heat transfer is integrated over a disk at fixed z. Then we compare these quantities
with the Nusselt number Nuavg calculated as the heat transfer averaged over the
whole cylinder Ω and in time. The maximal deviation σ within the domain is
evaluated according to

σ := max{|Nuavg −Nu(z)|, z ∈ {−0.5,−0.25, 0, 0.25, 0.5}}.

For comparison, we consider the DNS simulations by [21] and denote the respective
values by Nuref.
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For high Rayleigh numbers, boundary layers occur in this test case. In order to
resolve these layers in the numerical solution, the (isotropic) grid is transformed
via Txyz : Ω → Ω of the form

Txyz : (x, y, z)T 7→
(
x

r
· tanh(4r)

2 tanh(2)
,
y

r
· tanh(4r)

2 tanh(2)
,

tanh(4z)

2 tanh(2)

)T
(32)

with r :=
√
x2 + y2.

(a) (b) (c)

Fig. 3: Temperature iso-surfaces at T = 1000 for Pr = 0.786, (a) Ra = 105, (b)
Ra = 107, (c) Ra = 109, N = 10 · 163, γM = 0.1

A snapshot of temperature iso-surfaces for different Ra at T = 1000 is shown in
Figure 3. N = 10 ·163 cells, grad-div stabilization with γM = 0.1 and Q2 ∧Q1 ∧Q2

elements for velocity, pressure and temperature are used. Whereas the large scale
behavior shows one large convection cell (upflow of warm fluid and descent of cold
fluid) in all cases in a similar fashion, with larger Ra, smaller structures and thin
boundary layers occur. For Ra = 105, the flow reaches a steady state, whereas
Ra ∈ {107, 109} results in transient flow. This is in good qualitative agreement
with simulations run by [21].

First, we want to determine the optimal grad-div parameters depending on
Ra. The resulting benchmark quantities without any stabilization and with op-
timal grad-div parameter are presented in Table 1; results for different grad-div
parameters can be found in [16]. Only for Ra = 105, the unstabilized case γM = 0
gives satisfactory values for Nuavg and σ; the discrepancy from Nuref is only 0.25%.
Addition of grad-div stabilization does not corrupt this result. For higher Rayleigh
numbers, γM = 0 leads to Nusselt numbers strongly depending on z and differing
from the reference value by a large amount, for example by more than 88% of the
absolute value Nuref in case of Ra = 109. Even negative Nusselt numbers occur
for some z. Increasing the stabilization parameter to γM = 0.01 can reduce these
differences to 12% for Ra = 109. Also, the deviation within the domain can be
diminished considerably for all Ra > 105. The optimal grad-div parameter found
by these experiments lies in the range γM ∈ [0.01, 0.1] for all considered Rayleigh
numbers. We infer that this parameter can be chosen independently from Ra.
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Ra 105 106 107 108 109

Nuavg σ Nuavg σ Nuavg σ Nuavg σ Nuavg σ

nGD 3.84 0.04 8.65 0.34 16.41 1.83 37.70 29.5 118.8 137.6
GD 3.84 0.03 8.65 0.02 16.88 0.11 31.29 0.70 55.52 1.35

Nuref 3.83 8.6 16.9 31.9 63.1

Table 1: Averaged Nusselt numbers and maximal deviations σ for different Ra and
different grad-div parameters γM , averaged over time t ∈ [150, 1000], N = 10 · 83,
Q2 ∧ Q1 ∧ Q1 elements are used. nGD indicates that no stabilization is used (in
particular, γM = 0), GD means that an optimal grad-div parameter is used: γM =
0.1 for 105 ≤ Ra ≤ 108 and γM = 0.01 for Ra = 109. Nuref denotes DNS results
from [21]

Anyway, for all Ra ∈ {105, 106, 107, 108}, the reference values Nuref obtained by
DNS can be approximated surprisingly well with the help of grad-div stabilization
on a mesh with only N = 10 · 83 cells. Also, the Nusselt number varies little with
respect to different z.

τuM τθL Nuavgth σth Nuavgbb σbb NuavgId,th σId,th NuavgId,bb σId,bb

0 0 55.52 1.35 58.14 1.48 41.46 40.20 47.53 23.40
hu1 0 53.84 1.41 58.27 1.47 38.71 43.03 44.30 24.79
0 hu1 52.45 3.48 56.53 3.06 37.61 10.84 54.26 16.53

hu1 hu1 51.81 3.43 54.04 3.33 37.05 10.31 49.13 12.92

Table 2: Averaged Nusselt numbers and maximal deviations σ for different
choices of stabilization and finite element spaces, Ra = 109, averaged over time
t ∈ [150, 1000], N = 10 · 83. The subscript Id means that an isotropic grid is
used; otherwise, the grid is transformed via Txyz. The additional th indicates that
(Q2/Q1)∧Q1∧(Q2/Q1) elements are used and (Q+

2 /Q1)∧Q1∧(Q+
2 /Q1) are denoted

by bb. The label hu1 indicates that τ
u/θ
M/L

= 1
2h/‖uh‖∞,M/L. Nuref denotes DNS

results from [21]

In order to examine the influence of additional LPS SU and different grids, we
give an overview for different parameters with (Q2/Q1)∧Q1 ∧ (Q2/Q1), indicated
by th, and enriched (Q+

2 /Q1) ∧ Q1 ∧ (Q+
2 /Q1) finite elements, denoted by bb, in

Table 2; Ra = 109 and the optimal grad-div parameter γM = 0.01 are used.
Note that the Nusselt numbers calculated with enriched elements are in better
agreement with the reference value Nuref = 63.1 than using (Q2/Q1) ∧ Q1 ∧
(Q2/Q1) elements. Our simulations support the conclusion that additional LPS
SU stabilization is not needed in case of anisotropic grids that are adapted to the
specific problem; grad-div suffices and is even more favorable. Stabilization of the
velocity as τuM ∼ h/‖uh‖∞,M performs better than other LPS SU variants (see
[16] for the results for more parameters). We also test an isotropic and globally
refined grid, which is not particularly refined in boundary layer regions. In Table
2, the subscript Id indicates this grid. In general, the calculated benchmarks differ
from the reference value Nuref by a larger amount than the ones obtained on a
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grid that is refined within the boundary layer, even with the same number of
cells. However, in case of an isotropic grid, the deviation is very large if grad-div
stabilization is used solely; LPS SU stabilization becomes relevant: Since small
temperature structures in the boundary layer are not resolved, their influence has
to be modeled. Additional stabilization for the temperature serves this purpose.
For instance, in case of (Q2/Q1) ∧Q1 ∧ (Q2/Q1) elements, it reduces σId,th from
nearly 97% of the absolute value of the calculated Nusselt number NuavgId,th in case

of (γM , τuM , τθL) = (0.01, 0, 0) to less than 30% if τθL = 1
2h/‖uh‖∞,L. The use of

enriched elements improves the results; a Nusselt number NuavgId,bb = 54.2603 is

reached for (γM , τuM , τθL) = (0.01, 0, 12h/‖uh‖∞,L).
Further, we try to improve the results for Ra = 109 by using finer grids with

N = 10 · 163 cells (with ∆t = 0.05) and N = 10 · 323 cells (with ∆t = 0.01). The
results are shown in Table 3. We first observe that adding LPS stabilization of
any kind decreases the Nusselt number; we achieve best results on the grid with
N = 10 · 163 cells for grad-div stabilization alone. The obtained values still are
too small by 4.1% for Taylor-Hood elements and by 2.8% for enriched elements.
On the finest mesh, the Nusselt number still differs from Nuref by 1.5% if a grid
transformed via Txyz is used. We suppose that we can improve the results by
adding more degrees of freedom in the middle of the domain by transforming the
mesh in z-direction alone via Tz : Ω → Ω of the form

Tz : (x, y, z)T 7→
(
x, y,

tanh(4z)

2 tanh(2)

)T
(33)

with r :=
√
x2 + y2. The results for Nuavg are best if additional LPS stabilization

of the velocity is used and we get as close as 0.1% to the reference value. With
grad-div stabilization alone, the Nusselt number differs from the reference value
by 0.7%. This supports the expectation that for the Nusselt number, resolving
boundary layers at the top and bottom is more important than at the hull.

N γM τuM τθL Nuavg σ Nuref

10 · 163 th Txyz 0.01 0 0 60.49 1.16 63.1
th Txyz 0.01 hu1 0 59.16 1.27
th Txyz 0.01 0 hu1 59.67 0.98
th Txyz 0.01 hu1 hu1 58.72 1.23
bb Txyz 0.01 0 0 61.34 0.54

10 · 323 th Txyz 0.01 0 0 62.14 0.68
th Tz 0.01 0 0 62.65 0.55
th Tz 0.01 hu1 0 63.01 0.78
th Tz 0.01 0 hu1 62.47 0.54

Table 3: Averaged Nusselt numbers and maximal deviations σ for different grids
and choices of stabilization and finite element spaces, Ra = 109, averaged
over time. th indicates that (Q2/Q1) ∧ Q1 ∧ (Q2/Q1) elements are used and

(Q+
2 /Q1)∧Q1 ∧ (Q+

2 /Q1) are denoted by bb. The label hu1 indicates that τ
u/θ
M/L

=
1
2h/‖uh‖∞,M/L. Nuref denotes DNS results from [21]
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Fig. 4: Nu/Ra0.3 (Γ = 1, Pr = 0.786) for an anisotropic grid with N ∈ {10 · 83, 10 ·
163} cells, compared with DNS data from [21] (Γ = 1, Pr = 0.786) and [22] (Γ = 1,
Pr = 0.7). The grid is transformed via Txyz for N ∈ {10 · 83, 10 · 163} and via Tz
for N = 10 · 323. The label th indicates that (Q2/Q1) ∧ Q1 ∧ (Q2/Q1) elements
are used and (Q+

2 /Q1) ∧ Q1 ∧ (Q+
2 /Q1) are denoted by bb. For 105 ≤ Ra ≤ 108,

(γM , τuM , τθL) = (0.1, 0, 0) is chosen; (γM , τuM , τθL) = (0.01, 12h/‖uh‖∞,M , 0) in case
of Ra = 109

Figure 4 provides an overview over the obtained results (using the respective
optimal stabilization parameters and an anisotropic grid). We compare the reduced
Nusselt numbers Nu/Ra0.3 for different finite element spaces, indicated by th and
bb as above, with DNS data from the literature. The Grossmann-Lohse theory from
[23] suggests that there is a scaling law of the Nusselt number depending on Ra

(at fixed Pr) that holds over wide parameter ranges. The reduced Nusselt number
calculated in our experiments is nearly constant. However, one does not observe
a global behavior of the Nusselt number as Nu ∝ Ra0.3. But as in [21], a smooth
transition between different Ra-regimes Ra ≤ 106, 106 ≤ Ra ≤ 108 and Ra ≥ 108

can be expected.

〈δθ〉 〈δθ〉 ∝ Ram

Ra = 105 Ra = 107 Ra = 109 m mref

top 0.1295 0.0311 0.0084 -0.2970 -0.285
bottom 0.1295 0.0293 0.0085 -0.2957 -0.285

Table 4: Thermal boundary layer thicknesses at the top and bottom plates
〈δθ〉top/bottom, averaged over r =

√
x2 + y2 ∈ [0, 12 ], and slopes mtop/bottom

resulting from the fitting 〈δθ〉 ∝ Ram. The grid withN = 10·163 cells is transformed
via Txyz; Q2 ∧ Q1 ∧ Q2 elements are used. γM = 0.1 for Ra ∈ {105, 107} and
γM = 0.01 for Ra = 109. mref denotes the slope proposed by [21]
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Table 4 validates that a grid transformed via Txyz (together with grad-div
stabilization) resolves the boundary layer: For a grid with N = 10 · 163 cells, the
dependence between Ra and the resulting thermal boundary layer thickness 〈δθ〉
is in good agreement with the law 〈δθ〉 ∝ Ra−0.285 suggested by [21]. Here, the
thermal boundary layer thickness δθ is calculated via the so-called slope criterion
as in [21]. δθ is the distance from the boundary at which the linear approximation
of temperature profile at the boundary crosses the line θ = 0. 〈δθ〉 denotes the
average over r =

√
x2 + y2 ∈ [0, 12 ].

All in all, our simulations illustrate that we obtain surprisingly well approx-
imated benchmark quantities even on relatively coarse meshes (compared with
DNS from the reference data). For example, for the grid with N = 10 · 163 cells,
we have a total number of approximately 1, 400, 000 degrees of freedom (DoFs)
in case of (Q2 /Q1) ∧Q1 ∧ (Q2 /Q1) elements. Enriched (Q+

2 /Q1) ∧Q1 ∧ (Q+
2 /Q1)

elements result in 1, 900, 000 DoFs for N = 10 · 163 cells. Refinement increases the
number of DoFs roughly by a factor of 8. In comparison, the DNS in [21] requires
approximately 1, 500, 000, 000 DoFs.

The key ingredients are grad-div stabilization and a grid that resolves the
boundary layer. In case of isotropic grids, that are not adapted to the problem,
LPS SU stabilization for the temperature becomes necessary. Bubble enrichment
enhances the accuracy on all grids.

6 Summary and Conclusions

We considered conforming finite element approximations of the time-dependent
Oberbeck-Boussinesq problem with inf-sup stable approximation of velocity and
pressure. In order to handle spurious oscillations due to dominating convection or
poor mass conservation of the numerical solution, we introduced a stabilization
method that combines the idea of local projection stabilization with streamline
upwinding and grad-div stabilization.

A stability and convergence analysis is provided for the arising nonlinear semi-
discrete problem. We can show that the Gronwall constant does not depend on the
kinetic and thermal diffusivities ν and α for velocities and temperatures satisfying
u ∈ [L∞(0, T ;W 1,∞(Ω))]d, uh ∈ [L∞(0, T ;L∞(Ω))]d, θ ∈ L∞(0, T ;W 1,∞(Ω)).
The approach relies on the existence of a (quasi-)local interpolation operator
ju : V div → V div

h preserving the divergence (see [15]). In contrast to the estimates
in [7] and [8] for the Oseen and Navier-Stokes problem, we can circumvent a mesh
width restriction of the form

ReM :=
hM‖uh‖∞,M

ν
≤ 1√

ν
and PeL :=

hL‖uh‖∞,L
α

≤ 1√
α

even if no compatibility condition between fine and coarse velocity and tempera-
ture spaces holds. Therefore, the analysis is valid for almost all inf-sup stable finite
element settings.

Furthermore, we suggest a suitable parameter design depending on the coarse
spaces Du

M and Dθ
L. Note that a broad range of LPS SU parameters τuM , τθL is

possible. In particular, we achieve the same rate of convergence in the considered
error norm if τuM and τθL are set to zero. The LPS SU stabilization gives additional
control over the velocity gradient in streamline direction.
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It is indicated by our analysis and numerical experiments that γM = O(1)
is essential for improved mass conservation and velocity estimates in W 1,2(Ω).
We point out that grad-div stabilization proves essential for the independence of
the Gronwall constant CG(u, θ,uh) from ν and α. Though the analysis assumes
isotropic grids, the use of anisotropic ones in our numerical examples does not
lead to any problems. The need for additional stabilization can be avoided if the
grids are adapted to the problem. This is agreement with the numerical tests
performed in [7]. Especially, for boundary layer flows, the SUPG-type stabilization
τuM ∼ h/‖uh‖∞,M seems to be suited for modeling unresolved velocity scales if
isotropic meshes are used. The combination with enriched elements is favorable.

For Rayleigh-Bénard convection, the combination of grad-div stabilization, a
problem adjusted mesh and suitable ansatz spaces yields results that approximate
DNS data.

7 Appendix

Lemma 1 Let ε > 0 and (u, p, θ) ∈ V div × Q × Θ, (uh, ph, θh) ∈ V div
h × Qh × Θh

be solutions of (2)-(3) and (7)-(8) satisfying u ∈ [W 1,∞(Ω)]d, θ ∈ W 1,∞(Ω) and

uh ∈ [L∞(Ω)]d. If Assumptions 1 and 2 hold, we can estimate the difference of the

convective terms in the momentum equation

cu(u;u, eu,h)− cu(uh;uh, eu,h)

≤ C

ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M + 3ε|||ηu,h|||

2
LPS + 3ε|||eu,h|||2LPS

+

[
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2M |u|
2
W 1,∞(M)}+

C

ε
max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}+ ε‖uh‖2∞

]
‖eu,h‖20

with C independent of hM , hL, ε, the problem parameters and the solutions. The

difference of the convective terms in the Fourier equation can be bounded as

cθ(u; θ, eθ,h)− cθ(uh; θh, eθ,h)

≤ C

ε

∑
M∈Mh

h−2
M ‖ηu,h‖

2
0,M + 3ε|||ηu,h|||

2
LPS + 3ε|||eu,h|||2LPS

+
1

2
|θ|W 1,∞(Ω)‖eu,h‖

2
0 +

C

ε

∑
L∈Lh

h−2
L ‖ηθ,h‖

2
0,L

+ ‖eθ,h‖20

(
1

2
|θ|W 1,∞(Ω) + ε‖uh‖2∞ + ε max

M∈Mh

{h2M |θ|
2
W 1,∞(M)}

+
C

ε
max
M∈Mh

{h2M
γM
|θ|2W 1,∞(M)

}
+
C

ε
max
M∈Mh

{γ−1
M ‖θ‖

2
∞,M}

)

with C > 0 independent of the problem parameters, hM , hL and the solutions.
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Proof Similar estimates can be performed for velocity and temperature. We present
the steps for the velocity; for details for the temperature terms, we refer the reader
to [16].
We choose the same interpolation operators ju : V div → V div

h and jθ : Θ → Θh as
in Theorem 2. With the splitting ηu,h + eu,h = (u− juu) + (juu− uh) from (13)
and integration by parts, we have

cu(u;u, eu,h)− cu(uh;uh, eu,h)

= ((u− uh) · ∇u, eu,h)︸ ︷︷ ︸
=:Tu1

+ (uh · ∇(u− juu), eu,h)︸ ︷︷ ︸
=:Tu2

−1

2
((∇ · uh)juu, eu,h)︸ ︷︷ ︸

=:Tu3

.

Now, we bound each term separately. Using Young’s inequality with ε > 0, we
calculate:

Tu1 ≤
∑

M∈Mh

‖∇u‖∞,M
(
‖eu,h‖20,M + ‖ηu,h‖0,M‖eu,h‖0,M

)
≤ |u|W 1,∞(Ω)‖eu,h‖

2
0 +

∑
M∈Mh

1

hM
|u|W 1,∞(M)‖ηu,h‖0,MhM‖eu,h‖0,M (34)

≤ 1

4ε

∑
M∈Mh

1

h2M
‖ηu,h‖

2
0,M +

(
|u|W 1,∞(Ω) + ε max

M∈Mh

{h2M |u|
2
W 1,∞(M)}

)
‖eu,h‖20.

For the term Tu2 , we have via integration by parts

Tu2 = (uh · ∇ηu,h, eu,h) = −(uh · ∇eu,h,ηu,h)− ((∇ · uh)eu,h,ηu,h) =: Tu21 + Tu22.

Term Tu21 is the most critical one. We calculate using Assumption 2 and Young’s
inequality:

Tu21 = −(uh · ∇eu,h,ηu,h) ≤
∑

M∈Mh

‖uh‖∞,M‖∇eu,h‖0,M‖ηu,h‖0,M

≤ C
∑

M∈Mh

‖uh‖∞,M‖eu,h‖0,Mh−1
M ‖ηu,h‖0,M

≤ ε‖uh‖2∞‖eu,h‖20 +
C

ε

∑
M∈Mh

h−2
M ‖ηu,h‖

2
0,M .

(35)

Using (∇ · u, q) = 0 for all q ∈ L2(Ω), Assumption 1 and Young’s inequality with
ε > 0, we obtain

Tu22 = −((∇ · uh)ηu,h, eu,h) = ((∇ · (ηu,h + eu,h))ηu,h, eu,h)

≤
∑

M∈Mh

‖ηu,h‖∞,M
(
‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

)
‖eu,h‖0,M (36)

≤
∑

M∈Mh

ChM√
γM
|u|W 1,∞(M)

√
γM

(
‖∇ · eu,h‖0,M + ‖∇ · ηu,h‖0,M

)
‖eu,h‖0,M

≤ ε|||ηu,h|||
2
LPS + ε|||eu,h|||2LPS +

C

ε
max
M∈Mh

{h2M
γM
|u|2W 1,∞(M)

}
‖eu,h‖20.
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Utilizing the splitting according to (13), we have

Tu3 = ((∇ · uh)juu, eu,h) = −((∇ · uh)ηu,h, eu,h) + ((∇ · uh)u, eu,h) = Tu22 + Tu32.

and use the same estimate as in (36). For the term Tu32, we use that (∇ · u, q) = 0
for all q ∈ L2(Ω) and Young’s inequality:

|Tu32| = |(∇ · uh,u · eu,h)| = |(∇ · (−ηu,h − eu,h + u),u · eu,h)|

≤ |(∇ · ηu,h,u · eu,h)|+ |(∇ · eu,h,u · eu,h)|

≤
∑

M∈Mh

(
‖u‖∞,M

√
γM‖∇ · ηu,h‖0,M

1
√
γM
‖eu,h‖0,M

+ ‖u‖∞,M
√
γM‖∇ · eu,h‖0,M

1
√
γM
‖eu,h‖0,M

)
≤ ε|||ηu,h|||

2
LPS + ε|||eu,h|||2LPS +

C

ε
max
M∈Mh

{γ−1
M ‖u‖

2
∞,M}‖eu,h‖

2
0.

(37)

Combining the above bounds (34)-(37) yields the claim.

References
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