Short Course on Partial Differential Equations with deal.II Mixed Elements

Daniel Arndt

IWR, Universität Heidelberg

April 09 - 13, 2018

Mixed Finite Elements - Step-22

Consider the stationary Stokes problem

$$
\begin{aligned}
-\Delta \boldsymbol{u}+\nabla p & =\boldsymbol{f} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

which serves as a model for

- creeping flow
- incompressible fluid
- stationary flow

Mixed Finite Elements - Step-22

Consider the stationary Stokes problem

$$
\begin{aligned}
-\Delta \boldsymbol{u}+\nabla \boldsymbol{p} & =\boldsymbol{f} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

which serves as a model for

- creeping flow
- incompressible fluid
- stationary flow

Solution components

- velocity \boldsymbol{u}
- pressure p

Mixed Finite Elements - Step-22

deal.II

Weak formulation

$$
\begin{aligned}
(\nabla \boldsymbol{u}, \nabla \boldsymbol{v})-(\nabla \cdot \boldsymbol{v}, p) & =\boldsymbol{f}, \boldsymbol{v} \\
(\nabla \cdot \boldsymbol{u}, q) & =0
\end{aligned}
$$

Sattle point problem

$$
\left(\begin{array}{cc}
A & -B \\
B^{T} & 0
\end{array}\right)\binom{\boldsymbol{u}}{p}=\binom{\boldsymbol{f}}{0}
$$

with

- $A=-\Delta$
- $B=\nabla$

Mixed Finite Elements - Step-22

deal.II Course

Daniel
Arndt

Discretization

$$
\begin{aligned}
\left(\nabla \boldsymbol{u}_{h}, \nabla \boldsymbol{v}_{h}\right)-\left(\nabla \cdot v_{h}, p_{h}\right) & =\left(\boldsymbol{f}, v_{h}\right) \\
\left(\nabla \cdot \mathbf{u}_{h}, q_{h}\right) & =0
\end{aligned}
$$

Sattle point problem

$$
\left(\begin{array}{cc}
A & B \\
B^{T} & 0
\end{array}\right)\binom{\boldsymbol{u}}{p}=\binom{\boldsymbol{f}}{0}
$$

with

- $A=-\Delta$
- $B=\nabla$

Mixed Finite Elements - Step-22

```
Test problem
- \(\Omega=(-5,5) \times(-1,1)\)
- \(\left.u\right|_{y= \pm 1}=\mathbf{0}\)
- \(u_{x}=u_{x}(y)\)
- \(u_{y}=0\)
```

This means for the Stokes problem

$$
\begin{aligned}
\left(-\partial_{x x}-\partial_{y y}\right) u_{x}+\partial_{x} p & =0 \\
\left(-\partial_{x x}-\partial_{y y}\right) u_{y}+\partial_{y} p & =0 \\
\partial_{x} u_{x}+\partial_{y} u_{y} & =0
\end{aligned}
$$

Mixed Finite Elements - Step-22

```
Test problem
- \(\Omega=(-5,5) \times(-1,1)\)
- \(\left.u\right|_{y= \pm 1}=\mathbf{0}\)
- \(u_{x}=u_{x}(y)\)
- \(u_{y}=0\)
```

This means for the Stokes problem

$$
\begin{aligned}
-\partial_{y y} u_{x}+\partial_{x} p & =0 \\
\partial_{y} p & =0 \\
\partial_{x} u_{x} & =0
\end{aligned}
$$

Mixed Finite Elements - Step-22

```
Test problem
- \(\Omega=(-5,5) \times(-1,1)\)
- \(\left.u\right|_{y= \pm 1}=\mathbf{0}\)
- \(u_{x}=u_{x}(y)\)
- \(u_{y}=0\)
```

This means for the Stokes problem

$$
\begin{aligned}
\partial_{y y} u_{x}=\partial_{x} p & =C \\
\partial_{y} p & =0 \\
\partial_{x} u_{x} & =0
\end{aligned}
$$

Mixed Finite Elements - Step-22

```
Test problem
- \(\Omega=(-5,5) \times(-1,1)\)
- \(\left.u\right|_{y= \pm 1}=\mathbf{0}\)
- \(u_{x}=u_{x}(y)\)
- \(u_{y}=0\)
```

This means for the Stokes problem

$$
\begin{aligned}
u_{x} & =C y^{2}+a y+b \\
u_{y} & =0 \\
p & =C x+d
\end{aligned}
$$

Mixed Finite Elements - Step-22

Test problem

- $\Omega=(-5,5) \times(-1,1)$
- $\left.u\right|_{y= \pm 1}=0$
- $u_{x}=u_{x}(y)$
- $u_{y}=0$

This means for the Stokes problem

$$
\begin{aligned}
u_{x} & =C\left(y^{2}-1\right) \\
u_{y} & =0 \\
p & =C x+d
\end{aligned}
$$

Prescribe $\left.u_{x}\right|_{x=-5}=\left(1-y^{2}\right) \Rightarrow C=-1$.

Remarks on Solver

Sattle point problem

$$
\left(\begin{array}{cc}
A & -B \\
B^{T} & 0
\end{array}\right)\binom{\boldsymbol{u}}{p}=\binom{\boldsymbol{f}}{0}
$$

The first equation can be expressed as $\boldsymbol{u}=A^{-1}(\boldsymbol{f}-B p)$. Hence,

$$
B^{T} A^{-1} B p=-B^{T} A^{-1} \boldsymbol{f}
$$

We need only A^{-1}

Remarks on Solver

Sattle point problem

$$
\left(\begin{array}{cc}
A & -B \\
B^{T} & 0
\end{array}\right)\binom{\boldsymbol{u}}{p}=\binom{\boldsymbol{f}}{0}
$$

The first equation can be expressed as $\boldsymbol{u}=A^{-1}(\boldsymbol{f}-B p)$. Hence,

$$
\underbrace{B^{T} A^{-1} B}_{\approx /} p=-B^{T} A^{-1} \boldsymbol{f}
$$

Use

- Use UMFPACK or ILU for A
- a mass-preconditioned CG solver for $B^{T} A^{-1} B$

