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Chapter 1

From elliptic to mixed
problems

We begin our course of mixed finite element methods by studying a vector-
valued elliptic problem. Then, we study its dependence on its parameters and
naturally arrive at a mixed formulation. We derive a few properties of mixed
systems and then turn our attention to the first example: the Stokes equations
of incompressible flow. We close the chapter by considering mixed systems as
first order conditions for constrained minimization problems.

1.1 Linear elasticity

In this section, we study the simplest mathematical model for elastic deforma-
tion of solids based on Hooke’s law. For comparison, consider [Bra97; Bra13].
For the full nonlinear model in all mathematical detail refer to [Cia88].
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1.1.1 Notation: Differential operators for vector fields u : Rd → Rd are
defined as follows:

∇u =

∂1u1 · · · ∂du1

...
...

∂1ud · · · ∂dud

 (gradient) (1.1)

∇·u =

d∑
i=1

∂iui (divergence) (1.2)

For a tensor field σ : Rd → Rd×d, the divergence is a vector defined
column-wise as

∇·σ =

(
d∑
i=1

∂iσij

)
j=1,...,d

(1.3)

1.1.2. The deformation of a solid body is described as a mapping Φ from the
reference configuration Ω ⊂ Rd to a deformed configuration Ω̂ ⊂ Rd, such
that each undeformed point x ∈ Ω is mapped to the point x̂ after deforma-
tion. The domain d is 3 for physically relevant models, but we investigate two-
dimensional problems in order to study mathematical properties and numerical
methods more easily.

Actually, we are not quite interested in this mapping Φ, since it depends on
the position of the points x. On the other hand, a basic principle of physical
laws is frame invariance, namely, if we change from one Cartesian coordinate
system to another, the physical law may only change by the same coordinate
transformation, not in its physical implications. Therefore, only the differences
x̂− x should matter. Thus, we introduce the displacement u, such that

Φ = I + u.

The symbol I will refer to all occurrences of identical mappings and their ma-
trices.

So far, by the introduction of u, we divide translations of the reference configu-
ration out of our model. But, in addition, we have to eliminate the influence of
rigid body rotations. These are operations, which leave all distances and angles
unchanged. Thus, we investigate the change of the distance between x and x+z
under the mapping Φ. By definition of the derivative, we have

|Φ(x+ z)− Φ(x)|2 = ‖∇Φz‖2 + o(|z|4)

= zT∇ΦT∇Φz + o(|z|4)

= zT (I +∇uT +∇u+∇uT∇u)z + o(|z|4)

= |z|2 + 2zT ε(u)z + o(|z|4),
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where

ε̃(u) = 1
2

(
∇uT +∇u+∇uT∇u

)
(1.4)

is the strain tensor. From linear algebra, we know that a linear mapping which
preserves all distances is orthogonal and thus also preserves angles. Thus, every
deformation with ε(u) = 0 is a rigid body transformation, namely a combination
of translation and rotation.

In this class we are concerned only with linear problems, which can be justified
by the notion of infinitely small deformations u. Then, we only study first order
effects in u, which implies that we are going to neglect the quadratic term in
ε(u). This is justified by the fact that we obtain a model, which is sufficiently
accurate for small deformations.

1.1.3 Definition: The linearized strain tensor or symmetric gradi-
ent of u is

ε(u) =
∇u+∇uT

2
. (1.5)

1.1.4. Next, we have to consider the interplay of forces and deformations. The
basic principle is Newton’s axiom of force balance. If a body force f acts on
a small volume V , there have to be surface forces acting against f in order to
keep V at rest. Similarly, if a torque is applied inside this volume, there must be
tangential forces on the surface balancing this torque. Due to Euler, we model
these forces as a mapping t, which at each point x maps a direction vector n to
a force vector t(x, n). Thus, the balance of forces is written as∫

V

f dx+

∫
∂V

t(x, n) ds =0∫
V

x× f dx+

∫
∂V

x× t(x, n) ds=0.

Due to Euler and Cauchy, this mapping t(x, n) can be expressed as σ(x)n by
the stress tensor σ. Without proof, we note that the balance of torque implies
that σ is symmetric, while the force balance equation after integration by parts
becomes

f +∇·σ = 0. (1.6)

What is missing now is a relation between the displacement u and the stress σ,
which is not the result of fundamental principles, but of material properties.

Remark 1.1.5. At this point, we play again the card of small deformations,
such that we do not have to distinguish whether equations are formulated on the
reference domain Ω or on the deformed domain Ω̂. Such a discussion becomes
confusing easily and thus remains a subject for a more specialized class.
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1.1.6 Definition: Hooke’s law states that the stress depends linearly
on the strain. Together with frame invariance, this implies the relation

σ = 2µε(u) + λ tr ε(u)I, (1.7)

where λ ≥ 0 and µ > 0 are material properties called Lamé-Navier
parameters.

Remark 1.1.7. The trace of the strain operator is equal to the trace of the
gradient. Thus, we have

tr ε(u) = ∇·u I. (1.8)

1.1.8. Equations (1.6) and (1.7) together define a second order partial differ-
ential equation, for which we have to impose boundary conditions. A natural
choice, which keeps the mathematical analysis simple is the Dirichlet bound-
ary condition u = 0, corresponding to an elastic body whose boundary is
fixed. The alternative is the traction free boundary condition σn = 0 with
vanishing normal traces. Combinations are possible, for instance u · n = 0 for
a boundary that allows sliding but no penetration. Constraining ourselves to
Dirichlet condition on ΓD ⊂ ∂Ω and traction free on γN = ∂Ω \ ΓD, we obtain
the boundary value problem

−∇·σ(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ ΓD,

σ(x)n = 0 x ∈ ΓN ,

(1.9)

together with the material law (1.7). Once we test and integrate by parts to
obtain our weak formulation, we obtain∫

Ω

−(∇·σ) · v dx =

∫
Ω

σ : ∇v dx−
∫

ΓN

σn · v ds,

such that traction free is actually the natural boundary condition comparable to
the Neumann condition for the Laplacian. Note that : is the double contraction
or Frobenius product (see Problem 1.1.11 below) of the two tensors.

1.1.9. We now walk the missing steps to obtain a weak formulation. first, we
enter Hooke’s law for σ to obtain:∫

Ω

[
2µε(u) : ∇v + λ(∇·uI) : ∇v

]
dx =

∫
Ω

f · v dx.

Then, we choose the space

V = H1
ΓD (Ω;Rd) =

{
v ∈ H1(Ω;Rd)

∣∣v|ΓD = 0
}
. (1.10)
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We notice for the second term that

I : ∇v =

d∑
i=1

∂ivi = ∇·v.

Furthermore, we use the result of Problem 1.1.11 to obtain

ε(u) : ∇v = ε(u) : ε(v).

1.1.10 Definition: The weak formulation of the Lamé-Navier boundary
value problem

−∇·σ(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ ΓD,

σ(x)n = 0 x ∈ ΓN ,

is: find u ∈ V = H1
ΓD

(Ω;Rd) such that

a(u, v) ≡ 2µ(ε(u), ε(v)) + λ(∇·u,∇·v) = (f, v) ∀v ∈ V. (1.11)

1.1.11 Problem: Given the vector space of square matrices X = Rd×d
with the Frobenius inner product

〈A,B〉 = A : B =
∑
ij

aijbij . (1.12)

Show that the subspaces of symmetric and skew-symmetric matrices,
respectively, are orthogonal to each other and X is the direct sum of
those.

1.1.12. The form a(·, ·) is symmetric and thus semi-definite on V . It can also
be bounded easily by the H1-norm. But, for well-posedness of the weak formu-
lation, we also require ellipticity. This question is indeed not trivial and rests
on the fact that for a function u ∈ V , such that ∇u is skew-symmetric every-
where, there holds ε(u) ≡ 0. Thus, such functions must be excluded by the
boundary conditions. Note, that in particular for rigid body translations and
rotations ε(u) = 0. Therefore, the Dirichlet boundary conditions must exclude
such solutions.

The condition needed for well-posedness is called Korn inequality, and it will be
posed as an assumption. We will give a proof for a simple case and refer the
readers to a plethora of articles on more complicated cases.
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1.1.13 Assumption: We assume that the boundary conditions defining
the space V in the weak formulation of the Lamé-Navier equations are
such that a Korn inequality

c2K‖u‖
2
H1(Ω;Rd) ≤ ‖u‖

2
L2(Ω;Rd) + ‖ε(u)‖2L2(Ω;Rd), (1.13)

holds for all u ∈ V with a uniform constant cK > 0.

Remark 1.1.14. We use the indefinite article ‘a’ for this inequality, because it
comes in many different forms, for instance replacing the L2-norm by a bound-
ary term. It’s mathematics is not trivial. There is nevertheless a very simple
interpretation of this inequality: the kernel of the gradient consists of constant
functions, in the context of elastic deformations of translations by a constant
vector. The kernel of the strain tensor contains translation and rotations. Thus,
a Korn inequality can only hold, if the boundary conditions rule out rotations.

1.1.15 Lemma: Let V = H1
0 (Ω;Rd) for a Lipschitz domain Ω. Then,

Korn’s inequality holds on V with a constant cK > 0.

Proof. While the inequality is of high importance in the mathematical and nu-
merical analysis of problems in continuum mechanics, it a peripheral topic to
this class. Therefore, we omit the proof and refer to Theorem 3.3 in [DL76,
Section III.3.3].
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1.1.16 Problem: Let the space V = H1
0 (Ω;Rd) be equipped with the

inner product 〈u, v〉 = a(u, v) with the bilinear form of the Lamé-Navier
equations and the corresponding norm ‖.‖V .
Show using techniques from the standard theory of elliptic partial differ-
ential equations:

1. The weak formulation has a unique solution for which there holds

‖u‖V ≤ ‖f‖V ∗ .

2. The “energy estimate” for conforming finite element approximation
with a space Vh ⊂ V

‖u− uh‖V = inf
vh∈Vh

‖u− vh‖V .

3. The H1-error estimate

‖u− uh‖H1 ≤
2µ+ dλ

2cKµ
inf

vh∈Vh
‖u− vh‖H1 . (1.14)

Use the fact that the space V can be composed into the space V 0

of divergence-free functions (∇·v = 0) and its complement.

4. For λ � µ, the previous estimate is useless. Can it be improved
easily? In view of the “energy estimate”, can you think of condi-
tions?

Example 1.1.17. We study the finite element approximation of the following
problem: a square sheet of elastic material is hanging from the top, subject to
gravity acting as body force pointing downward. We choose µ = 1 and vary λ
from 1 to 105. Figure 1.1 shows approximations with standard bilinear finite
elements (red) and a “good” approximation (blue). In fact, the red solution for
λ = 105 is almost identical with the undeformed configuration, although the
material is not as hard. This phenomenon was discovered early in finite element
history and is called “locking”.

1.1.18. As we could see in the preceding problem and example, approximation
of the solution to the Lamé-Navier equations becomes difficult, if λ � µ. In
this case, the material is called almost incompressible, since the divergence
measures compression or dilation and the dominating divergence term forces the
divergence of the solution to be small. These cases are important in engineering
and they initiated a lot of the research that resulted in the topics of this class.

1.1.19. A way to approach this problem is the introduction of an auxiliary
variable

p = −λ∇·u.
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(a) λ = 1 (b) λ = 10

(c) λ = 100 (d) λ = 1000

(e) λ = 10000 (f) λ = 100000

Figure 1.1: Approximation with standard finite elements (red) and “good” ele-
ments (blue) for µ = 1 and different values of λ.
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Entering this definition into the Lamé-Navier equations, we obtain the following
weak formulation.

1.1.20 Definition: The displacement-pressure formulation of the
Lamé-Navier equations reads: find a pair (u, p) ∈ V ×Q such that

2µ(ε(u), ε(v))− (p,∇·v) =(f, v) ∀v ∈ V
−(q,∇·u)− 1

λ (p, q) =0 ∀q ∈ Q.
(1.15)

Equivalently, we write this in a single equation as

2µ(ε(u), ε(v))− (p,∇·v)− (q,∇·u)− 1
λ (p, q) = (f, v)

∀v ∈ V, q ∈ Q, (1.16)

or in the nonsymmetric, (semi-)definite version

2µ(ε(u), ε(v)) + (p,∇·v)− (q,∇·u) + 1
λ (p, q) = (f, v)

∀v ∈ V, q ∈ Q, (1.17)

Here, V is as before and Q = L2(Ω).

Remark 1.1.21. The three forms have different purposes and will be used
accordingly. The first one highlights the fact that we now have a system of
equations, each equation tested with its own test function. The second and
third stress the fact that we now have a bilinear form on the product space
X = V ×Q.

The second form is symmetric, but we will see later that is indefinite. Thus,
non of our tools from functional analysis apply. In contrast, the third form is
nonsymmetric, but we have

2µ(ε(u), ε(u)) + (p,∇·u)− (p,∇·u) + 1
λ (p, p)

= 2µ(ε(u), ε(u)) + 1
λ (p, p) ≥ 2µ

cK
‖u‖2H1 + 1

λ (p, p).

Thus, we have ellipticity with respect to the norm

‖(u, p)‖2X = ‖u‖2H1 + ‖p‖2L2 . (1.18)

Nevertheless, the ellipticity constant depends on λ, and for large λ, we loose
sharpness of estimates again.

1.1.22 Definition: Integrating the first equation by parts, we obtain
the strong form of the Lamé-Navier equations

−2µ∇·ε(u) +∇p= f
∇·u + 1

λp= 0
(1.19)
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1.2 Abstract saddle-point systems

1.2.1. In order to study the mathematics not only of the Lamé-Navier equations
but of more general systems of the form of equation (1.15), we introduce abstract
bilinear forms

a(u, v) = 2µ(ε(u), ε(u)), u, v ∈ V
b(u, p) = −(p,∇·u), u ∈ V, p ∈ Q
c(p, q) = 1

λ (p, q) p, q ∈ Q.
(1.20)

1.2.2 Definition: For each of the bilinear forms, we define associated
operators

A : V → V ∗ 〈Au, v〉 = a(u, v),

B : V → Q∗ 〈Bu, q〉 = b(u, q),

BT : Q→ V ∗
〈
BT p, v

〉
= b(v, p),

C : Q→ Q∗ 〈Cp, q〉 = c(p, q).

(1.21)

Here, 〈·, ·〉 is the canonical pairing between an element of the dual space
and the space itself.

1.2.3 Definition: The abstract saddle-point problem in weak form
reads: find a pair (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V,
b(u, q) − c(p, q) = g(q) ∀q ∈ Q. (1.22)

In operator notation, it reads

Au+BT p= f in V ∗,
Bu− Cp = g in Q∗. (1.23)

1.2.4 Notation: In order to consider the whole bilinear form of the
saddle-point system on the space X = V ×Q, we introduce

A
((

u
p

)
,

(
v
q

))
= a(u, v) + b(v, p) + b(u, q)− c(p, q) (1.24)
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1.2.5 Definition: Let the operator A : V → V ∗ in the saddle-point
system be invertible. Then, we define the Schur complement operator
S : Q→ Q∗ of the system as

S = −BA−1BT − C. (1.25)

1.2.6 Lemma: Formally, the saddle-point system (1.23) can be solved
in two steps by solving

Sp = g −BA−1f, (1.26)

Au = f −BT p. (1.27)

Proof. Formally solve the first equation of (1.23) for u and enter into the second.

1.2.7 Lemma: Let a(·, ·) be elliptic and c(·, ·) be positive semi-definite,
and let ker (B)

T ∩ ker (C) 6= {0}. Then, the bilinear form A(·, ·) is
indefinite.

Proof. First, we note that because of ellipticity of a(·, ·)

A
((

u
0

)
,

(
u
0

))
= a(u, u) ≥ γ‖u‖2V ,

for some positive constant γ. Furthermore, A is invertible and its inverse is
positive definite. Furthermore, A−1BT : Q→ V . Then, choosing v = −A−1BT p
yields

A
((

v
p

)
,

(
v
p

))
= a(A−1BT p,A−1BT p)− 2b(A−1BT p, p)− c(p, p)

=
〈
BT p,A−1BT p

〉
− 2
〈
A−1BT p,BT p

〉
− c(p, p)

= −
〈
BT p,A−1BT p

〉
− c(p, p).

The first term is a quadratic term with the bilinear form associated with A−T ,
which is positive definite. Since b(·, ·) is not the zero form, there is some p such
that v 6= 0. Therefore, with the minus sign and the semi-definiteness of c(·, ·)
we have found a vector such that

A
((

v
p

)
,

(
v
p

))
< 0.

Remark 1.2.8. The previous result holds in particular for c(·, ·) ≡ 0.
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1.3 Stokes equations

1.3.1. When we write the Lamé-Navier equations in mixed form according to
Definition 1.1.20, there is no parameter λ tending to infinity when the material
becomes more and more compressible. Instead, there is the parameter 1/λ tend-
ing to zero. Thus, we can simply consider the case of incompressible material
by setting 1/λ = 0 or, in our abstract framework (1.20) setting c(·, ·) = 0. The
resulting system is not only important for incompressible elasticity, but also
models the slow flow of a very viscous liquid, so called creeping flow.

1.3.2 Definition: The Stokes equations in strong form are

−2µ∇·ε(u) +∇p= f
∇·u = 0.

(1.28)

In weak form, they are: find u ∈ V ⊂ H1(Ω;Rd) and p ∈ Q ⊂ L2(Ω)
such that

2µ(ε(u), ε(v))− (∇·v, p) =(f, v) + bdry ∀v ∈ V
−(∇·u, q) =0 + bdry ∀q ∈ Q.

(1.29)

The subspaces V and Q are determined by boundary conditions.

1.3.3 Definition: A vector-valued function u is called divergence-free
or solenoidal, if there holds

∇·u = 0.

Flow described by a solenoidal function is called incompressible.

1.3.4 Lemma: Let V = H1
0 (Ω;Rd). Then, for any solenoidal function

u ∈ V there holds

2µ(ε(u), ε(v)) = µ(∇u,∇v) ∀v ∈ V. (1.30)

Proof. We have

ε(u) : ε(v) =
1

4

d∑
i,j=1

[(∂iuj + ∂jui)(∂ivj + ∂jvi)]

=
1

2

d∑
i,j=1

[∂iuj∂ivj + ∂iuj∂jvi] .
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The first term is the desired result, thus we have to eliminate the other one. We
integrate by parts to obtain∫

Ω

∂iuj∂jvi dx = −
∫

Ω

∂ijujvi dx =

∫
Ω

∂juj∂ivi dx

Entering in the previous equation and summing over i and j, we obtain

2(ε(u), ε(v)) = (∇u,∇v) + (∇ · u,∇ · v) = (∇u,∇v).

1.3.5. In order to simplify subsequent discussion, it is customary to use the pre-
vious lemma to simplify the Stokes equations and to replace the strain tensor by
the gradient. As a result, we can avoid the use of a Korn inequality and operate
directly with the inner product of H1. We note though that this formulation,
while mathematically simpler, is physically wrong if u 6= H1

0 (Ω;Rd).

1.3.6 Definition: The simplified Stokes equations in strong form are

−ν∆u+∇p= f
∇·u = 0.

(1.31)

In weak form, they are: find u ∈ V ⊂ H1(Ω;Rd) and p ∈ Q ⊂ L2(Ω)
such that

ν(∇u,∇v)− (∇·v, p) =(f, v) + bdry ∀v ∈ V
−(∇·u, q) =0 + bdry ∀q ∈ Q.

(1.32)

The subspaces V and Q are determined by boundary conditions.

1.3.7 Definition: Typical boundary conditions for the Stokes problem
are

no-slip: u = 0, (1.33)
free: ∂nu+ pn = 0, (1.34)
slip: un = 0 ∂nuτ = 0, (1.35)

friction: un = 0 ∂nuτ = αuτ . (1.36)

Here, un and uτ are the normal and tangential components of u at the
boundary.

Remark 1.3.8. Very much the same way as for elliptic equations, boundary
conditions on the function u itself are essential boundary conditions which have
to be incorporated into the space V , while those on the normal derivatives are
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the result of integration by parts and thus of the type of natural boundary
conditions.

All of the conditions above can also be imposed with nonzero data, where the
physical meaning of such a condition might be debatable in some cases. Mathe-
matically, inhomogeneous essential boundary conditions are achieved by lifting
an arbitrary function with this boundary condition and modifying the right hand
side of the equation, while inhomogeneous conditions on the normal derivative
are implemented by boundary integrals on the right hand side.

Remark 1.3.9. Physically, the condition un = 0 models an impermeable wall.
It says in particular, that no mass is lost through this boundary and is thus
related to the first principle of mass conservation.

The conditions on the tangential velocity model the fact that molecules very
close to the wall stick to the wall. While this claim is not supported by a first
principle, it has been verified by measurements to very high accuracy. Nev-
ertheless, in the study of turbulent flow, a friction condition comes up quite
naturally.

1.3.10 Lemma: For any solenoidal u function there holds∫
∂Ω

u · n ds = 0. (1.37)

Furthermore, if the boundary condition un = 0 holds on the whole
boundary ∂Ω, then the pressure p is determined by the Stokes equa-
tions only up to a constant.

Proof. The first statement is simple application of the Gauss theorem∫
Ω

∇·udx =

∫
∂Ω

u · nds.

For the second statement, we note that the only term in the equations which
determines the pressure is (∇·v, p). Integrating by parts and using the boundary
condition, we obtain∫

Ω

∇·vpdx = −
∫

Ω

v∇p dx+

∫
∂Ω

v · np ds = −
∫

Ω

v∇p dx.

Since the gradient of a constant is zero, we can add any constant function to a
given solution p without changing the term (∇·v, p), thus leaving p determined
only up to a constant.
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1.3.11 Notation: If in Definition 1.3.6 the space V is chosen such that
for all v ∈ V there holds v · n = 0 on the whole boundary ∂Ω, then the
pressure solution p cannot be determined uniquely in L2(Ω). In such
cases, we choose the pressure space

L2
0(Ω) = L2(Ω)/R =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω

q dx = 0

}
. (1.38)

Remark 1.3.12. As we could see from the preceding lemma, solvability of
equation (1.32) depends on some compatibility of the spaces V and Q we had
not seen in the elliptic case. Indeed, we need a whole new tool from func-
tional analysis to replace the Lax-Milgram lemma. This tool will be studied in
Chapter 2.

1.4 Relation to constrained minimization

1.4.1. We end our introduction by relating the Stokes equations to a constrained
minimization problem very much like we had considered the solution of the
Poisson equation as a minimization problem on the space V .

1.4.2 Theorem: Assume that a(·, ·) is symmetric and V -elliptic on the
Hilbert space V . Let

J(v) = 1
2a(v, v)− f(v). (1.39)

Then, the minimization problem finding u ∈ V such that

J(u) = inf
v∈V

J(v), (1.40)

has a unique solution, which then is a minimum. It is determined by the
first order necessary condition

a(u, v) = f(v) ∀v ∈ V.

1.4.3. In the next step, we constrain the solution u to a subspace of V defined
as the kernel of the linear operator B : V → Q∗. Hence, we consider the
minimization problem

J(u) = minJ(v) subject to Bu = 0.

Going back to formulations with bilinear forms, the constraint translates to

u ∈ ker (B) =
{
v ∈ V

∣∣ b(v, q) = 0 ∀q ∈ Q}. (1.41)
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Since ker (B) is a vector space, we can just consider the restriction of the mini-
mization problem to this space. This is called the reduced problem.

1.4.4 Definition: The reduced problem of the constrained minimiza-
tion problem above is: find u ∈ ker (B), such that

J(u) = inf
v∈ker(B)

J(v). (1.42)

1.4.5 Lemma: If under the assumptions of Theorem 1.4.2 there holds in
addition that ker (B) is a closed subspace of V , then the reduced problem
in Definition 1.4.4 has a unique solution.

Proof. A closed subspace of a Hilbert space is a Hilbert space itself. Then, the
V -ellipticity of a(·, ·) is inherited on ker (B), and thus the Lax-Milgram lemma
provides a unique solution for the first order necessary condition on ker (B).

Remark 1.4.6. Here we already note that V -ellipticity of a(·, ·) is sufficient,
but not necessary. Indeed, ellipticity on ker (B) would have been sufficient for
well-posedness of the reduced problem.

1.4.7. While the solution theory for the reduced problem is particularly simple
and purely elliptic, the actual solution requires a representation of functions
in ker (B), for instance a basis of these functions. In practice, this is often
inconvenient, and we seek a method that solves a problem on the whole space.

1.4.8 Theorem: If u ∈ V is a solution of the constrained minimization
problem

J(u) = min
v∈V

J(v), b(u, q) = 0 ∀q ∈ Q,

the pair (u, p) ∈ V ×Q is a stationary point of the Lagrange functional

L (v, q) = 1
2a(v, v)− f(v) + b(v, q). (1.43)

Here, p ∈ Q is called the Lagrange multiplier.
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1.4.9 Problem: Verify: the first order necessary conditions of the La-
grange multiplier rule are

a(u, v) + b(v, p) = f(v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q.

To this end, recall the type of objects that derivatives of linear functionals
are and compute the derivatives of L .

1.4.10 Corollary: The Stokes equations with no-slip boundary condi-
tiond are the first order necessary conditions for the constrained mini-
mization problem: find a velocity u ∈ V = H1

0 (Ω) such that

1
2 (∇u,∇u)− f(u) = min,

(∇·u, q) = 0 ∀q ∈ Q.

The pressure p assumes the role of a Lagrange multiplier.
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Chapter 2

Conditions for well-posedness

In this chapter, we will first modify conditions for well-posedness in finite dimen-
sions from positive definiteness to the general case. In particular, we will derive
a quantitative formulation, which we will study for infinite dimensional prob-
lems in the second section. In the third section, we derive the inf-sup condition
for mixed problems as a special case.

2.1 Finite-dimensional problems

2.1.1. So far, our power horse for well-posedness was the Lax-Milgram lemma,
which can be applied under the conditions

a(u, v) ≤M‖u‖‖v‖ ∀u, v ∈ V (2.1)

a(u, u) ≥ γ‖u‖2 ∀u ∈ V. (2.2)

The second condition can also be rewritten in terms of the Rayleigh quotient as

0 < γ = inf
u∈V

a(u, u)

‖u‖2
.

Restricting this to a finite dimensional space, the notation usually changes from

a(u, v) = f(v) to vTAu = vT f, (2.3)

where A ∈ Rn×n is the matrix associated with the bilinear form. The bound for
the Rayleigh quotient means nothing but that the real parts of all eigenvalues
of A are bounded from below by γ. Thus, a matrix A for which we can apply
the Lax-Milgram lemma is positive definite. And the statement of the lemma in
finite dimension is, that a positive definite matrix is invertible. We know from
linear algebra that this is true, but we also know that the condition is all but
necessary.
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2.1.2. Why did we replace this clear theorem by the weaker Lax-Milgram
lemma, when we studied elliptic partial differential equations? For the first con-
dition, it should be noted that spectral properties of operators between spaces
of infinite dimension are much harder to obtain. Further, we do not need in-
formation on the whole spectrum, but only on the eigenvalue closest to zero.
Therefore, we used a simple estimate in order to avoid discussing the spectrum
at all. But, there is an important difference between Theorem 2.1.5 and the
estimate (2.2): the assumption of the theorem is qualitative, λ 6= 0, while the
assumption of Lax-Milgram is quantitative,

<λ ≥ γ > 0.

The following problem shows why such a change is necessary.

2.1.3 Problem: On the space `2(R) define the operator A by its eigen-
value decomposition

A : `2(R)→ `2(R)

ek 7→ 1
kek.

Here, {ek} is the orthogonal basis of unit vectors of the form

ek = (0 , . . . , 0 , 1 , 0 , . . .)T .
↑
k

1. Show that this operator does not have a bounded inverse, albeit
its eigenvalues are positive.

2. Show that the range of A is not closed in `2(R)

2.1.4 Problem: Find an invertible, symmetric matrix A ∈ R2×2 and a
vector v ∈ R2 such that vTAv = 0 and thus the Lax-Milgram lemma is
inconclusive.

The question of well-posedness in finite dimensions can be answered by:

2.1.5 Theorem: A matrix A ∈ Rn×n is invertible if and only if one of
the following equivalent conditions holds:

1. all its (possibly complex) eigenvalues are nonzero,

2. all its singular values are nonzero,

3. for each nonzero v ∈ Rn holds Av 6= 0.
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2.1.6. We focus on the second and third conditions, respectively, in Theo-
rem 2.1.5. But, the problem above tells us that we will run into trouble, if we
do not quantify this. Therefore, we start our attempt by requiring:

‖Au‖2 ≥ γ‖u‖2 ∀u ∈ V.

But while this is a condition we can easily write down for matrices and operators,
it does not work that well for bilinear forms. Thus, we first look at the singular
value decomposition.

2.1.7 Theorem: Let A ∈ Rm×n be a real matrix. Then, there exist
two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as a real,
nonnegative diagonal matrix Σ̂, such that

A = UΣV T , and Σ =



[
Σ̂ 0

]
for m < n

Σ̂ for m = n[
Σ̂

0

]
for m > n

(2.4)

This is the singular value decomposition (SVD) of A, the diagonal
entries of Σ̂ are the singular values of A and the column vectors of U
and V are the left and right singular vectors of A, respectively. The
same theorem holds for complex matrices with unitary U and V .

Proof. We prove constructively for the real case by induction. For m = 1 or
n = 1 the theorem is obvious. Let now m,n > 1 and assume the theorem has
been proven for A ∈ R(m−1)×(n−1). Let σ2

1 be the largest eigenvalue of ATA,
which due to the symmetry of ATA is real and nonnegative. Actually, if it is
zero, then ATA = 0 and thus A = 0 and Σ = 0. Now assume σ2

1 > 0. Choose
x1 as an eigenvector to the eigenvalue σ2

1 of ATA and

y1 =
1

σ1
Ax1.

We can complete both x1 and y1 to an orthonormal basis X and Y , respectively.
Then, there holds for e1 ∈ Rn and ē1 ∈ Rm:

Y TAXe1 = Y TAx1 = σ1Y
T y1 = σ1ē1

(Y TAX)T ē1 = XTATY ē1, = XTAT y1 = 1
σ1
XTATAx1 = σ1X

Tx1 = σ1e1.

Thus,

Y TAX =

[
σ1 0

0 Ã

]
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with Ã ∈ R(m−1)×(n−1). By induction, there holds Ã = Ũ Σ̃Ṽ T with orthogonal
matrices U and V and Σ̃ of the same form as Σ and both dimensions reduced
by 1. Now let

U = Y

[
1 0

0 Ũ

]
, V = X

[
1 0

0 Ṽ

]
, Σ =

[
σ1 0

0 Σ̃

]
U and V as the product of orthogonal matrices are orthogonal, σ has the claimed
structure and there holds A = UΣV T .

2.1.8 Corollary: By the construction of the proof, the singular values
are ordered by decreasing magnitude,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (2.5)

The number r of nonzero singular values is the dimension of the range
of the matrix A.

2.1.9 Definition: Let A : V →W be a linear operator. Then, we define
the kernel and the range of A as

ker (A) =
{
v ∈ V

∣∣Av = 0
}

im(A) =
{
w ∈W

∣∣ ∃ v ∈ V : Av = w
}
.

2.1.10 Definition: Let V ⊂ Rn be a subspace. We define the orthog-
onal complement of V as

V ⊥ =
{
w ∈ Rn

∣∣ ∀ v ∈ V 〈w, v〉 = 0
}
. (2.6)

2.1.11 Lemma: Let A ∈ Rm×n and AT its transpose. Then, there
holds

ker (A) = im(AT )⊥

im(A) = ker
(
AT
)⊥

ker
(
AT
)

= im(A)⊥

im(AT ) = ker (A)
⊥

(2.7)

Proof. Let A = UΣV T be the singular value decomposition of A and r be the
number of nonzero singular values. Then, the first r vectors of U span the range
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of A and the last n− r vectors of V span its kernel. Furthermore,

AT =
(
UΣV T

)T
= V ΣUT . (2.8)

Therefore, the first r vectors of V span the range of AT and the last n−r vectors
of U span its kernel.

2.1.12 Corollary: Let A ∈ Rm×n and AT its transpose. Then, the
restrictions A : ker (A)

⊥ → im(A) and AT : ker
(
AT
)⊥ → im(AT ) are

isomorphisms.

Proof. We note that dim im(A) = dim im(AT ). Thus, by Lemma 2.1.11 the
dimensions of domain and range of each of the restricted operators are equal,
say dim im(A) = r. The singular value decomposition of the operators is

A = UΣV T AT = V ΣUT ,

where all matrices are in Rr×r and

Σ = diag(σ1, . . . , σr),

and all singular values are positive. Thus, A and AT are invertible.

2.1.13 Corollary: Let r = dim ker (A)
⊥. Then, for the smallest nonzero

singular value there holds

σr = inf
v∈ker(A)⊥

sup
w∈Rm

wTAv

|v||w|
= inf
w∈ker(AT )⊥

sup
v∈Rn

wTAv

|v||w|
. (2.9)

Proof. Since the Cauchy-Schwarz inequality turns into an equation if and only
if the two vectors are coaligned, there holds for any v ∈ Rn:

sup
w∈Rm

wTAv

|w|
=
vTATAv

|Av|
.

Therefore,

inf
v∈ker(A)⊥

sup
w∈Rm

wTAv

|v||w|
= inf
v∈ker(A)⊥

|Av|
|v|

.
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Now, let v =
∑
αivi where vi are the columns of V in the SVD of A. Then,

|Av|2 =

∣∣∣∣∣A
r∑
i=1

αivi

∣∣∣∣∣
2

=

∣∣∣∣∣
r∑
i=1

σiαiui

∣∣∣∣∣
2

=

r∑
i=1

σ2
i α

2
i .

The quotient ∑r
i=1 σ

2
i α

2
i∑r

i=1 α
2
i

clearly has its minimum if α1 = · · · = αr−1 = 0.

2.1.14 Definition: A bilinear form a(·, ·) on V ×W is said to admit
the inf-sup condition or is called inf-sup stable, if there holds

inf
u∈V

sup
w∈W

a(u,w)

‖u‖V ‖w‖W
≥ γ > 0. (2.10)

Remark 2.1.15. In this finite dimensional exposition, is clear that V and W
must have the same dimension, and thus V = W = Rn. This will be differ-
ent, when we consider infinite dimensional spaces and indeed consider different
spaces V and W .

2.1.16 Lemma: The following statements are equivalent to the inf-sup
condition (2.10):

∀u ∈ V ∃w ∈W : a(u,w) ≥ γ‖u‖V ‖w‖W (2.11)

∀u ∈ V ∃w ∈W :

{
‖w‖W ≤ ‖u‖V
a(u,w) ≥ γ‖u‖2V

(2.12)

∀u ∈ V ∃w ∈W :

{
γ‖w‖W ≤ ‖u‖V

Aw = u
(2.13)

2.1.17 Problem: Prove Lemma 2.1.16.

2.2 Infinite dimensional Hilbert spaces

2.2.1. In the previous section, we derived quantitative conditions to ensure
the invertibility of a matrix A or its restriction to its cokernel ker (A)

⊥. The
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arguments there have a natural extension to infinite dimensional Hilbert spaces,
which we will derive in this section. We already saw in Problem 2.1.3 that we
may run into trouble if the range of A is not closed. On the other hand, it
turns out that most notions of linear algebra related to orthogonality can be
maintained in Hilbert spaces if closed subspaces are considered. We begin by
citing the most important results.

2.2.2 Definition: Let W ⊂ V be a subspace of a Hilbert space V . We
define its polar space W 0 ⊂ V ∗ and its orthogonal complement
W⊥ ⊂ V by

W 0 =
{
f ∈ V ∗

∣∣〈f, w〉V ∗×V = 0 ∀w ∈W
}
,

W⊥ =
{
v ∈ V

∣∣〈v, w〉V = 0 ∀w ∈W
}
.

(2.14)

For a subspace U ⊂ V ∗, we define its polar space

U0 =
{
v ∈ V

∣∣〈u, v〉V ∗×V = 0 ∀u ∈ U
}

(2.15)

2.2.3 Lemma: The polar space W 0 and the orthogonal complement
W⊥ of a subspace W ⊂ V are both closed. So is the polar space U0 of
a subspace U ⊂ V ∗.

Proof. Consider the mapping

Φw : V ∗ → R,
v 7→ 〈v, w〉V ∗×V .

For any w, the kernel of Φ is closed as the pre-image of a closed set. W 0 is
closed since it is the intersection of these kernels for all w ∈W .

The inner product is continuous on V × V . Therefore, the mapping

ϕw : V → R,
v 7→ 〈v, w〉,

is continuous. The argument continues as above. Similar for U0.

2.2.4 Theorem: Let W be a subspace of a Hilbert space V and W⊥

its orthogonal complement. Then, W⊥ = W
⊥
. Further, V = W ⊕W⊥

if and only if W is closed.
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Proof. Clearly, W
⊥ ⊂W⊥ since W ⊂W . Let now u ∈W⊥. Then, ϕ = 〈u, ·〉 is

a continuous linear functional on V . Therefore, if a sequence wn ⊂W converges
to w ∈W , we have

〈u,w〉 = lim
n→∞

〈u,wn〉 = 0.

Hence, u ∈W⊥ and W⊥ = W
⊥
.

Now, the “only if” follows by the fact, that ifW is not closed, there is an element
w ∈ W but not in W such that 〈w, u〉 = 0 for all u ∈ W⊥. Thus, w 6∈ W⊥ and
consequently w 6∈W⊥ ⊕W .

Let now W be closed. We show that there is a unique decomposition

v = w + u, w ∈W, u ∈W⊥, (2.16)

which is equivalent to V = W ⊕W⊥. Uniqueness follows, since

v = w1 + u1 = w2 + u2

implies that for any y ∈ V

0 = 〈w1 − w2 + u1 − u2, y〉 = 〈w1 − w2, y〉+ 〈u1 − u2, y〉.

Choosing y = u1−u2 and w1−w2 in turns, we see that one of the inner products
vanishes for orthogonality and the other implies that the difference is zero.

If v ∈ W , we choose w = v and u = 0. For v 6∈ W , we prove existence by
considering that due to the closedness of W there holds

d = inf
w∈W
‖v − w‖ > 0.

Let wn be a minimizing sequence. Using the parallelogram identity

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2,

we prove that {wn} is a Cauchy sequence by

‖wm − wn‖2 = ‖(v − wn)− (v − wm)‖2

= 2‖v − wn‖2 + 2‖v − wm‖2 − ‖2v − wm − wn‖2

= 2‖v − wn‖2 + 2‖v − wm‖2 − 4

∥∥∥∥v − wm + wn
2

∥∥∥∥2

≤ 2‖v − wn‖2 + 2‖v − wm‖2 − 4d2,

since (wm + wn)/2 ∈ W and d is the infimum. Now we use the minimizing
property to obtain

lim
m,n→∞

‖wm − wn‖2 = 2d2 − 2d2 − 4d2 = 0.
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By completeness of V , w = limwn exists and by the closedness of W , we have
w ∈W . Let u = v−w. By continuity of the norm, we have ‖u‖ = d. It remains
to show that u ∈ W⊥. To this end, we introduce the variation w + εw̃ with
w̃ ∈W to obtain

d2 ≤ ‖v − w − εw̃‖2

= ‖u‖2 − 2ε〈u, w̃〉+ ε2‖w̃‖,

implying for any ε > 0

0 ≤ −2ε〈u, w̃〉+ ε2‖w̃‖,

which requires 〈u, w̃〉 = 0.

2.2.5 Definition: Let V be a Hilbert space and W ⊂ V be a closed
subspace. For a vector v ∈ V , let v = w+u be the unique decomposition
with w ∈ W and u ∈ W⊥. Then we call w and u the orthogonal
projections of v into W and W⊥, respectively. We write

ΠW = w, ΠW⊥ = u.

2.2.6 Lemma: Let V be a Hilbert space and W ⊂ V be a closed
subspace. Then, the polar space W 0 ⊂ V ∗ and the orthogonal space
W⊥ can be isometrically identified by Riesz representation.

Proof. For every f in the dual of W⊥, define g ∈ V ∗ by

〈g, v〉V ∗×V = 〈f,ΠV ⊥v〉(V ⊥)∗×V ⊥ .

Clearly, g(v) = 0 for v ∈W , therefore g ∈W 0.

2.2.7 Theorem: Let V,W be Hilbert spaces and A : V → W a contin-
uous linear operator. Then, the following statements are equivalent:

im(A) is closed in W,

im(AT ) is closed in V ∗,

im(A) = ker
(
AT
)0
,

im(AT ) = ker (A)
0
.

(2.17)
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Remark 2.2.8. This is the famous closed range theorem by Banach. It actually
holds under weaker assumptions, for instance V,W only Banach spaces. The
proof can be found for instance in [Yos80, p. 205–209].

2.2.9 Theorem: Let A : V → W be continuous and surjective. Then,
the image A(U) ⊂W of any open set U ⊂ V is open.

Remark 2.2.10. This is the open mapping theorem by Banach. The proof can
be found for instance in [Yos80, p.75–76].

2.2.11 Lemma: Let A : V → W be continuous. Then, im(A) is closed
in W if and only if there exists γ > 0 such that

∀w ∈ im(A) ∃v ∈ V Av = w ∧ γ‖v‖V ≤ ‖w‖W . (2.18)

Proof. We first show that the inf-sup condition (2.18) implies im(A) closed. To
this end, let {wn} be a Cauchy sequence in im(A) converging to a point w ∈W .
Thus, there is a sequence {vn} in V such that Avn = wn and γ‖vn‖ ≤ ‖wn‖.
Hence,

‖vm − vn‖V ≤
1

γ
‖wm − wn‖W ,

and {vn} is a Cauchy sequence in V . Therefore, vn → v ∈ V and due to
continuity of A we obtain Av = w and thus w ∈ im(A).

Conversely, let im(A) be closed in W . Thus, it is a Banach space and the
open mapping theorem applies to A : V → im(A). We map the open unit ball
B1(0) ⊂ V and obtain that A(B1(0)) is open in im(A), implying that there is
an open ball Bδ(0) ⊂ A(B1(0)). This is sufficient to construct v:

Let w ∈ im(A). Then,

w̃
δ

2

w

‖w‖
∈ Bδ(0) ⊂ A(B1(0)).

Hence, there is v ∈ V with ‖v‖ < 1 such that Av = w̃, which proves the
lemma.
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2.2.12 Theorem: Let a(·, ·) on V ×W be a bounded bilinear form such
that

a(v, w) ≤M‖v‖V ‖w‖W , (2.19)

and A : V →W ∗ its associated operator. Then, the following statements
are equivalent:

1. There exists γ > 0 such that

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
≥ γ. (2.20)

2. The operator AT : W → ker (A)
0 is an isomorphism and

‖ATw‖V ∗ ≥ γ‖w‖W ∀w ∈W. (2.21)

3. The operator A : ker (A)
⊥ →W ∗ is an isomorphism and

‖Av‖W∗ ≥ γ‖v‖V ∀v ∈ ker (A)
⊥
. (2.22)

Proof. First, we show the equivalence of the first two statements. Let us
rephrase the inf-sup condition to

‖ATw‖V ∗ = sup
v∈V

〈
ATw, v

〉
‖v‖V

= sup
v∈V

a(v, w)

‖v‖V
≥ γ‖w‖ ∀w ∈W.

Thus, equations (2.20) and (2.21) are equivalent and we have already proven
that the second statement implies the first. It remains to show the AT is an
isomorphism from W onto ker (A)

0. Equation (2.21) implies that AT : W →
im(AT ) is an isomorphism and its inverse is bounded by 1/γ (multiply both
sides by A−1). Using Lemma 2.2.11, we obtain that im(AT ) is closed in V ∗ and
the closed range theorem settles the issue.

In order to prove equivalence of the second and third statement, we use Lemma 2.2.6
to isometrically identify (ker (A)

⊥
)∗ with ker (A)

0. Thus, A is an isomorphism
from ker (A)

⊥ onto W ∗ if and only if AT is an isomorphism from W onto
(ker (A)

⊥
)∗ = ker (A)

0. and

‖A‖W∗→ker(A)⊥ = ‖AT ‖ker(A)0→W .
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2.2.13 Corollary: Let a(·, ·) on V ×W be a bounded bilinear form such
that

a(v, w) ≤M‖v‖V ‖w‖W . (2.23)

Let the inf-sup-condition

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
≥ γ > 0

hold. Then, the problem finding w ∈W such that

a(v, w) = f(v) ∀v ∈ V,

has a unique solution for f ∈ ker (A)
0 and

‖w‖W ≤
1

γ
‖f‖V ∗ . (2.24)

Remark 2.2.14. Corollary 2.2.13 exhibits an asymmetry between the left and
right argument. In particular, we obtain a unique solution only for the adjoint
operator AT , which is exactly what we need, when we compute say a pressure
from the divergence of a velocity field. In general, we consider the restriction of
f to the polar set of the kernel in the above well-posedness result detrimental
and would prefer a result that holds for all f ∈ V ∗. This on the other hand
requires ker (A) = {0}, or im(AT ) = W ∗. Then, on the other hand, we see
that im(AT ) is closed since im(A) is closed and the closed range theorem holds.
Therefore, we obtain the following theorem for the case that we require a unique
solution for all right hand sides.
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2.2.15 Theorem: Let a(·, ·) on V ×W be a bounded bilinear form such
that

a(v, w) ≤M‖v‖V ‖w‖W . (2.25)

Let for some γ > 0 the inf-sup-conditions

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
≥ γ,

inf
v∈V

sup
w∈W

a(v, w)

‖v‖V ‖w‖W
≥ γ

hold. Then, the problem finding v ∈ V such that

a(v, w) = f(w) ∀w ∈W,

has a unique solution for f ∈W ∗ and

‖v‖V ≤
1

γ
‖f‖W∗ . (2.26)

Remark 2.2.16. If we compare Theorem 2.2.15 with Corollary 2.2.13, we see
that the only difference lies in the fact that the second inf-sup condition ensures
surjectivity of A by injectivity of AT . In some cases it may be difficult to prove
both inf-sup conditions. Then, it is sufficient to prove one inf-sup condition, say
the first, and then only

inf
v∈V

sup
w∈W

a(v, w)

‖v‖V ‖w‖W
> 0,

thus, injectivity of AT . Although we verify less than the assumptions of The-
orem 2.2.15, the closed range theorem saves us from the additional work. We
further note that this notion is symmetric between A and AT , that is, it is
sufficient to prove inf-sup for either operator and injectivity for the other.

2.3 The inf-sup condition for mixed problems

2.3.1. In the previous section, we have developed a framework for well-posedness
of problems which are not V -elliptic. In principle, this theory can be applied
to the bilinear form A((u, p), (v, q)) as a whole. On the other hand, we can for-
mally split the solution of a constrained minimization problem into the reduced
problem and then computing the Lagrange multiplier, which more clearly ex-
hibits the relation of the two spaces V and Q involved in the mixed formulation.
Here are the resulting theorems.
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2.3.2 Theorem: Let V and Q be Hilbert spaces and let the mixed
bilinear form

A
((

u
p

)
,

(
v
q

))
= a(u, v) + b(v, p) + b(u, q)

be defined and bounded for any u, v ∈ V and p, q ∈ Q. Then, the
problem

A
((

u
p

)
,

(
v
q

))
= 〈f, v〉+ 〈g, q〉 ∀v ∈ V, q ∈ Q,

has a unique solution for any f ∈ V ∗ and any g ∈ Q∗ if and only if there
exists γ > 0 such that

∀
[
u ∈ V
p ∈ Q

]
∃
[
v ∈ V
q ∈ Q

]
: A

((
u
p

)
,

(
v
q

))
≥ γ‖(u, p)‖V×Q‖(v, q)‖V×Q,

and vice versa.

Proof. Straight application of Theorem 2.2.15.

2.3.3 Theorem: Let V and Q be Hilbert spaces and let

ker (B) =
{
v ∈ V

∣∣b(v, q) = 0 ∀q ∈ Q
}
. (2.27)

Then, the problem finding (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) + b(u, q) = f(v) ∀v ∈ V, q ∈ Q, (2.28)

is well-posed if and only if the problem finding u ∈ ker (B) such that

a(u, v) = f(v) ∀v ∈ ker (B) (2.29)

is well-posed for any f ∈ V ∗ and there is a positive constant β such that

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β. (2.30)

Proof. By requiring well-posedness of the reduced problem, u ∈ V is well-
determined and bounded by the data f ∈ V ∗ without knowledge of the La-
grange multiplier. Hence, with u ∈ V given and b(u, q) = 0, the problem of
determining the Lagrange multiplier p reduces to

b(v, p) = f(v)− a(u, v), ∀v ∈ V. (2.31)
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Applying Corollary 2.2.13 to the bilinear form b(., .), we deduce that this equa-
tion has a unique solution p ∈ Q if and only if f(v)− a(u, v) ∈ ker (B)

0, which
is the reduced problem.

Remark 2.3.4. Since V is a Hilbert space, the decomposition V = ker (B) ⊕
ker (B)

⊥ is uniquely determined and there is a corresponding decomposition
V ∗ = ker (B)

0
+ (ker (B)

⊥
)0, such that f = f0 + f⊥ above. The way we solve

the reduced problem first and then compute the Lagrange multiplier implies
that the solution u only depends on f⊥, while the Lagrange multiplier p only
depends on f0.

Remark 2.3.5. We have imposed well-posedness of the reduced problem only in
an abstract way. Depending on a(., .) we can formulate two conditions: elliptic-
ity on ker (B) or inf-sup stability on ker (B). Indeed, most problems considered
in this class will have symmetric bilinear forms a(., .), such that ellipticity serves
as our usual assumption. In these cases, note that V -ellipticity already implies
the well-posedness on ker (B).

2.3.6 Problem: Show that Theorem 2.3.3 can be extended to the case
with right hand side f(v) + g(q) with g ∈ Q∗.

2.3.7. We summarize the result of this section in an assumption for well-
posedness which will be the basis for further results in this course. We know
from the discussion above that this assumption is only sufficient and weaker
conditions may be imposed on a(., .). But indeed, it helps us through a lot of
problems and is a good compromise between generality and ease of use.

2.3.8 Assumption: Let V and Q be Hilbert spaces and let a(., .) and
b(., .) be bounded bilinear forms on V × V and V ×Q, respectively. We
define their norms as the smallest constants such that for all arguments
there holds

a(u, v) ≤ ‖a‖‖u‖V ‖v‖V , b(v, q) ≤ ‖b‖‖v‖V ‖q‖Q. (2.32)

With these forms, we associate bounded operators A, B, and BT accord-
ing to Definition 1.2.2. With b(., .) we associate the spaces

ker (B) =
{
v ∈ V

∣∣b(v, q) = 0 ∀q ∈ Q
}
,

ker (B)
T

=
{
q ∈ Q

∣∣b(v, q) = 0 ∀v ∈ V
}
.

(2.33)

Furthermore, we assume that a(., .) is positive semi-definite on V and
elliptic on ker (B),

a(u, u) ≥ 0 ∀u ∈ V, a(u, u) ≥ γ‖u‖2V ∀u ∈ ker (B) . (2.34)
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2.4 Galerkin approximation of mixed problems

2.4.1. The Galerkin approximation of mixed problems starts out the same way
as for elliptic problems, namely, choose discrete subspaces Vh ⊂ V and Qh ⊂ Q.
There is a fundamental difference though: the inf-sup condition is not inherited
automatically on the subspaces like V -ellipticity. It actually becomes an addi-
tional requirement on the choice of Vh and Qh. We will thus work our way in
several steps towards the final result.

2.4.2 Definition: Let Vh ⊂ V and Qh ⊂ Q. Then, we define the
subspace

ker (Bh) =
{
vh ∈ Vh

∣∣b(vh, qh) = 0 ∀qh ∈ Qh
}
. (2.35)

Furthermore, we define the affine space

V gh =
{
vh ∈ Vh

∣∣b(vh, qh) = g(q) ∀qh ∈ Qh
}
. (2.36)

2.4.3 Definition: We introduce the mixed discrete problem: find
(uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) + b(uh, qh) = f(vh) + g(qh), ∀vh ∈ Vh, qh ∈ Qh,
(2.37)

and the discrete reduced problem: find uh ∈ V gh such that

a(uh, vh) = f(vh), ∀vh ∈ ker (Bh) . (2.38)

2.4.4 Theorem: Let V gh be nonempty and let a(., .) and b(., .) be
bounded with norms ‖a‖ and ‖b‖, respectively, and let there be con-
stant and γh such that

a(vh, vh) ≥ γh‖vh‖2V , ∀vh ∈ ker (Bh) . (2.39)

Let furthermore the continuous mixed problem be well-posed with solu-
tion (u, p) ∈ V × Q. Then, the discrete reduced problem (2.38) has a
unique solution and there holds

‖u− uh‖V ≤
(

1 +
‖a‖
γh

)
inf

wh∈V gh
‖u− wh‖V +

‖b‖
γh

inf
qh∈Qh

‖p− qh‖Q
(2.40)

35



Proof. Let ugh ∈ V
g
h arbitrary. By the ellipticity assumption, there is a unique

function u0
h ∈ ker (Bh) such that

a(u0
h, vh) = f(vh)− a(ugh, vh), ∀vh ∈ ker (Bh) .

Hence, uh = ugh + u0
h is the unique solution to (2.38). Choose now wh ∈ V gh

arbitrarily. Then, vh = uh − wh ∈ ker (Bh) and using

f(vh) = a(u, vh)− b(vh, p),

we obtain

a(vh, vh) = f(vh)− a(uh − vh, vh)

= a(u− wh, vh)− b(vh, p)
= a(u− wh, vh)− b(vh, p− qh)

(2.41)

for any qh ∈ Qh, yielding

γh‖vh‖2V ≤ |a(vh, vh)| ≤ ‖a‖‖u− wh‖V ‖vh‖V + ‖b‖‖p− qh‖Q‖vh‖V .

We conclude by the standard triangle inequality argument

‖u− uh‖V ≤ ‖u− wh‖V + ‖uh − wh‖V

≤ ‖u− wh‖V +
‖a‖
γh
‖u− wh‖V +

‖b‖
γh
‖p− qh‖Q.

The estimate follows since wh ∈ V gh and qh ∈ Qh were chosen arbitrarily.

Remark 2.4.5. Note that we only used ellipticity of a(., .) on the subspace
ker (Bh) for the discrete problem and on ker (B) for the continuous problem.
Since the union of two vector spaces is not a vector space, this is a strange
condition. In practice, we will encounter two situations: either ellipticity holds
on the whole space V or ker (Bh) ⊂ ker (B), where the latter is again a vector
space.

2.4.6 Corollary: If in addition to the assumptions of Theorem 2.4.4
there holds

ker (Bh) ⊂ ker (B) , (2.42)

then

‖u− uh‖V ≤
(

1 +
‖a‖
γh

)
inf

wh∈V gh
‖u− wh‖V (2.43)

Proof. Consider that in equation (2.41) there holds vh ∈ ker (B).
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2.4.7 Theorem: Assume in addition the assumptions of Theorem 2.4.4
that there are constants βh, possibly depending on the parameter h, such
that

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ βh. (2.44)

Then, there is a unique solution ph ∈ Qh such that (uh, ph) is the unique
solution to the discrete mixed problem (2.37). There are a constants c(i)h
only depending on ‖a‖, ‖b‖, γh and βh such that

‖u− uh‖V ≤ c
(1)
h inf

vh∈Vh
‖u− vh‖V + c

(2)
h inf

qh∈Qh
‖p− qh‖Q (2.45)

‖p− ph‖Q ≤ c
(3)
h inf

vh∈Vh
‖u− vh‖V + c

(4)
h inf

qh∈Qh
‖p− qh‖Q. (2.46)

Proof. Applying Theorem 2.3.3 to the discrete problem (2.37), we conclude that
there is a unique solution (uh, ph) ∈ Vh×Qh. Let us begin estimating the error
by establishing the bound

inf
wh∈V gh

‖u− wh‖V ≤
(

1 +
‖b‖
βh

)
inf

vh∈Vh
‖u− vh‖V . (2.47)

By the third condition in Theorem 2.2.12, there is a unique zh ∈ ker (Bh)
⊥ such

that

Bhzh = Bh(u− vh), ∀vh ∈ Vh,

and

‖zh‖V ≤
1

βh
‖Bh(u− vh)‖Q∗h ≤

‖b‖
βh
‖u− vh‖V .

Let wh = zh + vh. Then, wh ∈ V gh since

b(wh, qh) = b(u− vh, qh) = b(u, qh) = g(qh), ∀qh ∈ Qh.

Furthermore,

‖u− wh‖V ≤ ‖u− vh‖V + ‖zh‖V ≤
(

1 +
‖b‖
βh

)
‖u− vh‖V .

Since vh ∈ Vh was chosen arbitrarily, we have proven (2.47) and thus by Theo-
rem 2.4.4 the estimate for ‖u− uh‖V with

c
(1)
h =

(
1 +
‖b‖
βh

)(
1 +
‖a‖
γh

)
, c

(2)
h =

(
1 +
‖b‖
βh

)
‖b‖
γh

. (2.48)
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It remains to prove the estimate for ‖p − ph‖Q. Using Galerkin orthogonality
for the test function vh, we obtain

a(u− uh, vh) + b(vh, p− ph) = 0. (2.49)

Hence, for any qh ∈ Qh there is by the inf-sup condition vh ∈ Vh with ‖vh‖V = 1
such that

βh‖ph − qh‖Q ≤ b(vh, ph − qh)

= a(u− uh, vh) + b(vh, p− qh)

≤ ‖a‖‖u− uh‖V + ‖b‖‖p− qh‖Q.

Again, the estimate for ‖p− ph‖Q follows by triangle inequality.

Remark 2.4.8. Indeed, if (2.44) holds, we do not have to require that V gh is
nonempty anymore, since B : V → Q∗ is surjective.

Remark 2.4.9. We purposely proved the preceding theorems with γh and βh
depending on the parameter h, typically the mesh size. This is the minimal
condition for well-posedness of the discrete problems. Nevertheless, this well-
posedness is not uniform in h, which causes loss of approximation, as the fol-
lowing problem shows. Therefore, we will only be satisfied with uniform inf-sup
constants in applications.

2.4.10 Problem: Let the following interpolation estimates hold:

inf
vh∈Vh

‖u− vh‖V = O(hk), inf
qh∈Qh

‖p− qh‖V = O(hk).

Then, the estimates in Theorem 2.4.7 are asymptotically optimal if and
only if there are constants γ̃ > 0 and β̃ > 0 independent of h such that

γh ≥ γ̃, βh ≥ β̃, (2.50)

independent of h.

2.4.11. As we can see from the form

∀qh ∈ Qh ∃vh ∈ Vh : Bhvh = qh ∧ ‖vh‖V ≤ ‖qh‖Q,

the uniform, discrete inf-sup condition introduces a compatibility condition be-
tween the spaces Vh and Qh. An immediate necessary condition is

dimVh ≥ dimQh. (2.51)

We often say that the space Vh is “rich enough” to control functions in Qh.
Obviously, counting dimensions is not sufficient, since we could have added
basis functions in ker (Bh). Even the condition

dim ker (Bh)
⊥

= dimQh
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is necessary and sufficient only for the existence of an inf-sup constant βh de-
pending on h. Therefore, we need a stronger argument in order to ensure com-
patibility of the discrete spaces. Such an argument is the following lemma by
Fortin. The projection operator ΠVh introduced there is usually referred to as
Fortin projection.

2.4.12 Lemma: Let the inf-sup condition for the bilinear form b(., .)
hold on V × Q with a constant β > 0. Then, it holds on Vh × Qh
uniformly with a constant β̃ > 0 if and only if there exists a linear
operator ΠVh : V → Vh satisfying for any v ∈ V

b(v −ΠVhv, qh) = 0, ∀qh ∈ Qh, (2.52)
‖ΠVhv‖V ≤ c‖v‖V , (2.53)

with c independent of h. There holds β̃ = β/c.

Proof. Assume first that ΠVh exists. then, there holds for any qh ∈ Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V
≥ sup
v∈V

b(ΠVhvh, qh)

‖ΠVhvh‖V
= sup
v∈V

b(v, qh)

‖ΠVhvh‖V
≥ β

c
‖qh‖Q.

Conversely, we assume the existence of a uniform, discrete inf-sup constant
β̃ > 0. Then, for any v ∈ V let g(.) = b(v, .) ∈ Q∗h. By Theorem 2.2.12, there is
a unique element ΠVhv ∈ ker (Bh)

⊥ such that

b(ΠVhv, qh) = b(v, qh), ∀qh ∈ Qh

and

‖ΠVhv‖V ≤
1

β̃
‖Bhv‖Q∗H ≤

‖b‖
β̃
‖v‖V .

Thus, ΠVh is bounded and (2.52) holds with c = ‖b‖/β̃.
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2.4.13 Problem: Let A ∈ Rn×n, B ∈ Rk×n, k ≤ n. Moreover, assume
that B has full rank and that A is symmetric and positive definite.
Consider the problem (

A B∗

B 0

)(
x
y

)
=

(
F
G

)
(*)

1. Prove that then S := BA−1B∗ is symmetric and positive definite,
too. How can this matrix be used to solve (*)?

2. Show that

P := I −B∗(BB∗)−1B.

is a projector on the kernel of B with ‖P‖2 = 1.

3. Show for the case G = 0 that x is a solution of

PAPx = PF

if (x, y) is a solution of (*).

2.5 Bringing back c(p, q)

2.5.1. The key to the mixed analysis which is also underlying our quasi-best-
approximation result was a splitting of the solution process into the reduced
problem for u and then applying the inf-sup condition for b(., .) in order to
estimate p. This way, we will be able to obtain estimates for the Stokes problem,
but we have tacitly abandoned weakly compressible elasticity. Indeed, the mixed
form of the Lamé-Navier equations is not a constrained minimization problem.
In this section, we will fill the gap and derive estimates for the solution of this
problem which are robust in λ.

In the Lamé-Navier equations, we had

c(p, q) = − 1
λ 〈q, p〉L2(Ω),

which suggests assuming symmetric and Q-elliptic. But, we want estimates
independent of λ! Therefore, we should only require semi-definite, which on the
other hand turns out a bit too weak.

2.5.2 Assumption: In addition to Assumption 2.3.8, let c(., .) be pos-
itive semi-definite and elliptic on ker

(
BT
)
,

c(q, q) ≥ u ∀q ∈ Q, c(q, q) ≥ γc‖q‖2Q ∀q ∈ ker
(
BT
)
. (2.54)

40



Remark 2.5.3. Again, this assumption is not necessary for the analysis, but
it yields a convenient and useful theorem which goes far beyond weakly com-
pressible elasticity and covers stabilized methods for spaces where the inf-sup
condition for b(., .) does not hold for the whole space Q.

2.5.4 Theorem: Let Assumption 2.5.2 hold and let a(., .) and c(., ) be
symmetric. In addition, let there be β > 0 such that

inf
q∈ker(BT )⊥

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β

inf
v∈ker(B)⊥

sup
q∈Q

b(v, q)

‖v‖V ‖q‖Q
≥ β

(2.55)

Then, the problem finding (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) + b(u, q)− c(p, q) = f(v) + g(q)

∀v ∈ V, q ∈ Q (2.56)

has a unique solution for all f ∈ V ∗ and g ∈ Q∗ and there is a constant
C such that

‖u‖V + ‖p‖Q ≤ C
(
‖f‖V ∗ + ‖g‖Q∗

)
. (2.57)

Proof. First, note that the ellipticity assumptions as well as the inf-sup condi-
tions are symmetric in V and Q. Indeed, replacing the test functions and the
form b(., .) by their negatives, we can transform the problem into one where V
and Q have exchanged their roles. Thus, it is sufficient to show well-posedness
for f = 0. The same result then holds for g = 0 and it holds for both nonzero
by linearity.

We note that by the inf-sup conditions both im(B) and im(BT ) are closed.
Thus, we can decompose u = u0 +u⊥ with u0 ∈ ker (B) and u⊥ in its orthogonal
complement. Assuming f = 0 and testing with q = 0 we obtain the equation

a(u, v) = −b(v, p) = 0. (2.58)

In particular, testing with v = u0 yields

a(u, u0) = −b(u0, p) = 0.

Hence,

γ‖u0‖2V ≤ a(u0, u0) = −a(u⊥, u0) ≤ ‖a‖‖u⊥‖‖u0‖,
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which implies

‖u0‖V ≤
‖a‖
γ
‖u⊥‖V . (2.59)

Testing with v = u and q = −p yields

a(u, u) + c(p, p) ≤ g(p) = g0(p0) + g⊥(p⊥),

where p0 ∈ ker
(
BT
)
, g⊥ ∈ ker

(
BT
)0 and the other two are defined by orthog-

onality in Q and Q∗, respectively. Let first g0 = 0. Then, by (2.58) and the
inf-sup condition for p, there is v ∈ V with ‖v‖V = 1 such that

β‖p⊥‖ ≤ |b(v, p⊥)| = |b(v, p)| = |a(u, v)| ≤
√
a(u, u)

√
a(v, v),

by the Bunyakovsky-Cauchy-Schwarz inequality for symmetric bilinear forms.
Therefore, squaring and using the definition of the operator norm of g⊥ yields

‖p⊥‖Q ≤
‖a‖
β2
‖g⊥‖Q∗ .

Furthermore, we have

c(p, p0) = b(u, p0)− g⊥(p0) = 0.

Hence,

γc‖p0‖2Q ≤ c(p
0, p0) = c(p⊥, p0) ≤ ‖c‖‖p0‖Q‖p

⊥‖Q,

concluding

‖p0‖Q ≤
‖a‖‖c‖
γcβ2

‖g⊥‖Q∗ .

We continue our proof for g⊥ = 0 and g0 6= 0. Testing with q = p0, we obtain

c(p0, p0) = c(p, p0)− c(p⊥, p0)

= b(u, p0)− g0(p0)− c(p⊥, p0)

≤ ‖g0‖Q∗‖p
0‖Q + ‖c‖‖p⊥‖Q‖p

0‖Q,

yielding

‖p0‖Q ≤
1

γc

(
‖g0‖Q∗ + ‖c‖‖p⊥‖Q

)
.

p⊥ is estimated as before by

‖p⊥‖2Q ≤
‖a‖
β2
‖g0‖Q∗‖p

0‖Q

≤ ‖a‖
γcβ2

‖g0‖2Q∗ +
‖a‖‖c‖
γcβ2

‖g0‖Q∗‖p
⊥‖Q

≤ ‖a‖
γcβ2

‖g0‖2Q∗ +
1

2
‖p⊥‖2Q +

‖a‖2‖c‖2

2γc2β4
‖g0‖2Q∗ .
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We conclude that p⊥ and p0 are bounded by g0. Summing up, we obtain for
f = 0 and g ∈ Q∗ the estimate

‖p‖Q ≤ c‖g‖Q∗ .

We estimate u0 by u⊥ using (2.59) and u⊥ by the inf-sup condition, choosing
q ∈ Q with ‖q‖Q = 1 such that

β‖u⊥‖ = b(u, q) = c(p, q) + g(q) ≤ ‖c‖‖p‖Q + ‖g‖Q∗ .

Thus, we have estimated all components of the solution by the norm of g,
assuming f = 0. Now we conclude the proof by reverting the roles of u and p,
respectively f and g.

2.5.5. The extension of Theorem 2.4.7 to the saddle-point problem of Defini-
tion 1.2.3 with bilinear form c(., .) is even more cumbersome than this theorem.
Nevertheless, the use of residual operators as a technique to structure the proof
of convergence is instructive and may come handy at some point.

2.5.6 Definition: For the saddle-point problem

a(u, v) + b(v, p) + b(u, q)− c(p, q),

and functions wh ∈ Vh and rh ∈ Qh we introduce the the residual oper-
ators Rf ∈ V ∗h and Rg ∈ Q∗h as

Rf (vh) = a(u− wh, vh) + b(vh, p− rh)

Rg(qh) = b(u− wh, qh)− c(p− rh, qh).

2.5.7 Corollary: Under Assumption 2.5.2, we have

|Rf (vh)| ≤
(
‖a‖‖u− wh‖V + ‖b‖‖p− rh‖

)
‖vh‖V

|Rg(qh)| ≤
(
‖b‖‖u− wh‖V + ‖c‖‖p− rh‖

)
‖qh‖Q.

(2.60)

2.5.8 Lemma: Let the assumptions of Theorem 2.5.4 hold. Then, there
are constants c1 to c4 independent of the solutions u, p, uh, and ph and
the discretization parameter h, such that for any vh ∈ Vh and qh ∈ Qh

‖uh − vh‖ ≤ c1‖Rf‖V ∗h + c2‖Rg‖Q∗h
‖ph − qh‖ ≤ c3‖Rf‖V ∗h + c4‖Rg‖Q∗h .

(2.61)
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Proof. The proof is lengthy and follows the lines of the proof of well-posedness
for Theorem 2.5.4. It is obtained by considering the components u0

h − v0
h and

u⊥h − v⊥h as well as p0
h − q0

h and p⊥h − q⊥h separately.

2.5.9. In spite of the bad treatment the proof of the previous lemma received in
these notes, it contains the main parts of the convergence proof, and whenever
a saddle-point problem including c(., .) is solved, it has to be reproduced. It is
just the fact that the proof is overwhelmingly technical that led to the decision
to leave this experience to the first time the reader actually needs this result.

2.5.10 Corollary: Let the assumptions of Theorem 2.5.4 hold. Then,
there are constants c1 to c4 independent of the solutions u, p, uh, and
ph and the discretization parameter h, such that

‖u− uh‖ ≤ c1 inf
vh∈Vh

‖u− vh‖V + c2 inf
qh∈Qh

‖p− qh‖Q

‖p− ph‖ ≤ c3 inf
vh∈Vh

‖u− vh‖V + c4 inf
qh∈Qh

‖p− qh‖Q.
(2.62)

Proof. The proof begins with the standard approach with triangle inequality

‖u− uh‖ ≤ ‖u− vh‖+ ‖vh − uh‖
‖p− ph‖ ≤ ‖p− qh‖+ ‖qh − ph‖.

Then, we employ Lemma 2.5.8 on the terms on the right and use the estimate
of Corollary 2.5.7.
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Chapter 3

The Stokes problem

3.1 Well-posedness of the continuous problem

3.1.1. We begin our investigation into the Stokes problem by investigating the
well-posedness of the continuous problem. This is particularly simple, since we
have

a(u, v) = (ε(u), ε(v))

for the original Stokes problem in Definition 1.3.2 and

a(u, v) = (∇u,∇v)

for the simplified Stokes equations in Definition 1.3.6. From the standard theory
for the Laplacian, we know that the second one is V -elliptic on V = H1

0 (Ω;Rd).
For the first one, we conclude this by using a Korn inequality. Therefore, we
can already conclude a first result:

3.1.2 Lemma: Let V = H1
0 (Ω,Rd) and Vh ⊂ V a finite dimensional

subspace. Then, a(., .) is elliptic on ker (B) and on ker (Bh) independent
of the choices of Q and Qh.

Remark 3.1.3. We focus here on no-slip boundary condition on the whole
boundary as the exemplary case. Other boundary conditions are possible, but
as soon as the Dirichlet boundary for one velocity component becomes too small,
the ellipticity of a(., .) on V must be established by new arguments known
for instance for Robin boundary conditions. In the extreme case of natural
boundary conditions all around, V is the subspace of H1(Ω,Rd) obtained by
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dividing by the space of all translations for the simplified form and by the space
of all rigid body movements.

Note that we have established already in Lemma 1.3.10 that the condition V =
H1

0 (Ω,Rd) implies the reduction of the pressure to the space Q = L2
0(Ω) from

Notation 1.3.11.

3.1.4. The previous lemma guarantees well-posedness of the reduced problem
in all possible cases. Therefore, the remainder of this section is only concerned
with the inf-sup condition for the divergence operator. We follow [GR86] in this
presentation.

3.1.5 Lemma: Let V = H1
0 (Ω,Rd). Then, the divergence operator

∇·: V → L2(Ω) is continuous and the subspace

V 0 = ker (∇·) =
{
v ∈ V

∣∣∇·v = 0 a.e.
}

is closed in V and V admits the orthogonal decomposition

V = V 0 ⊕ V ⊥.

Proof. We have that

‖∇·v‖2L2(Ω) =

∫
Ω

(∑
∂ivi

)2

dx ≤ d
∫

Ω

∑
|∂ivi|2 dx ≤ d‖v‖2H1(Ω;Rd).

Thus, the divergence operator is a continuous mapping from V to L2(Ω). The
definition of V 0 is equivalent to the definition of zero in L2(Ω). Finally, since
the kernel is the pre-image of a closed set under a continuous map, it is closed.
The existence of the decomposition follows from Theorem 2.2.4.

3.1.6 Lemma: If f ∈ V ∗ = H−1(Ω;Rd) satisfies

f(v) = 0 ∀v ∈ V 0,

then, there exists p ∈ L2(Ω) such that

f = ∇p.

If Ω is connected, then p is unique up to an additive constant.

Proof. First, we identify L2(Ω) with its dual. Then, by

〈−∇p, v〉V ∗×V = 〈p,∇·v〉L2(Ω), ∀v ∈ V,
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we see that −∇ : L2(Ω)→ V ∗ is the dual to the divergence operator. Using the
Cauchy-sequence argument, we see that im(∇·) is closed in L2(Ω) and the closed
range theorem applies. Thus, im(−∇) is closed in V ∗ and

im(∇) = (V 0)0 ∼= V ⊥

is the polar set of the kernel V 0. This implies the statement that there is a p for
every f . Uniqueness follows by the fact that the only differentiable functions on
a connected domain with ∇p = 0 are the constant functions, and by density of
such functions in L2(Ω).

3.1.7 Corollary: Let Ω be connected. Then,

1. ∇ : L2
0(Ω)→ V 0 is an isomorphism

2. ∇·: V ⊥ → L2
0(Ω) is an isomorphism

3.1.8 Theorem: Let Ω ⊂ Rd be a Lipschitz-domain, V = H1
0 (Ω,Rd)

and Q = L2
0(Ω). Then, there is a constant β > 0 depending only on the

geometry of Ω such that

inf
q∈Q

sup
v∈V

(∇·v, q)
‖v‖V ‖q‖Q

≥ β. (3.1)

Furthermore, the problem finding (u, p) ∈ V ×Q such that

a(u, v) + (∇·v, p) + (∇·u, q) = f(v) + g(q) ∀v ∈ V, q ∈ Q, (3.2)

has a unique solution for any right hand side f ∈ V ∗ and g ∈ im(∇·).

3.2 Stable discretizations

3.2.1. We begin by application of the generic theory of the previous chapter
to the Stokes problem in order to obtain a generic error estimate based on the
concrete choice of norms and a single assumption. Guided by this theorem,
we spend the remaining part of this section exploring different options for the
discrete spaces.
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3.2.2 Theorem: Let V = H1
0 (Ω;Rd) and Q = L2

0(Ω). Let furthermore
Vh ⊂ V and Qh ⊂ Q be discrete subspaces such that there exists β > 0
independent of h such that

inf
qh∈Qh

sup
vh∈Vh

(∇·vh, qh)

‖vh‖V ‖qh‖Q
≥ β. (3.3)

Then, the Galerkin approximation of (3.2) admits a unique solution
(uh, ph) ∈ Vh ×Qh with the quasi-bestapproximation property

‖u− uh‖1 ≤ c1 inf
vh∈Vh

‖u− vh‖1 + c2 inf
qh∈Qh

‖p− qh‖0

‖p− ph‖1 ≤ c3 inf
vh∈Vh

‖u− vh‖1 + c4 inf
qh∈Qh

‖p− qh‖0.
(3.4)

3.2.3 Corollary: Under the assumptions of Theorem 3.2.2, let there be
in addition interpolation operators IVh and IQh such that

‖u− IVhu‖1 ≤ ch
k|u|k+1

‖p− IQhp‖0 ≤ ch
k|p|k.

(3.5)

Then, there is a constant c independent of the approximation spaces such
that

‖u− uh‖1 ≤ ch
k
(
|u|k+1 + |p|k

)
‖p− ph‖1 ≤ ch

k
(
|u|k+1 + |p|k

)
.

(3.6)

3.2.4. We continue showing that the most natural discretizations in two dimen-
sions are not inf-sup stable. This holds for the discretization using continuous
linear or bilinear elements for both velocity components and the pressure as well
as for continuous linear or bilinear velocity functions combined with piecewise
constant pressure functions.

Example 3.2.5. We begin with a one-dimensional example. Piecewise linear
velocity and piecewise linear pressure (P1 − P1). Both continuous. Then, ∇·vh
is piecewise constant. Consequently, a pressure function which has zero mean
value on each cell is in the kernel of BTh .

Example 3.2.6. Take a patch of four quadrilaterals or triangles meeting in
a common vertex. Let Ω be the union of these grid cells. Choose linear and
bilinear shape functions for Vh, respectively. Then, dimVh = 2, since we have
one interior vertex with one basis function for each velocity component. Choose
piecewise constant pressure functions. Dividing out the global constant, we
conclude that dimQh = 3. Thus, the statement

∀qh ∈ Qh ∃vh ∈ Vh : ‖vh‖1 = ‖qh‖0 ∧ b(vh, qh) ≥ β‖qh‖2
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Figure 3.1: Piecewise linear pressure ( ) and divergence ( ) of piecewise linear
velocity.

Figure 3.2: Very coarse meshes with Dirichlet boundary. Degrees of freedom for
pressure ( ) and for both velocity components( ).

cannot hold true. Therefore, the inf-sup condition does not hold. In fact,
ker (Bh) = {0}.

Thus, we conclude that for this combination of shape function spaces, there is a
mesh such that they are not suited for the approximation of the Stokes problem.
But, this may be a problem of a mesh with too few cells. In fact, asymptotically,
a triangular mesh contains twice as many vertices as cells, a quadrilateral mesh
as many. Therefore, dimVh > dimQh as soon as the mesh is sufficiently fine.
Will this be sufficient?

3.2.7 Problem: The domain Ω = [0, 1]2 is decomposed into N × N
congruent squares where each of them is again divided into two triangles.
The decomposition Th is given by these triangles.
We again choose piecewise linear ansatz functions for the velocity for Vh
(vanishing on ∂Ω) and piecewise constant ansatz functions for Qh.
Is there a N and an orientation of the triangles such that Vh × Qh is
inf-sup stable?
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3.2.8 Problem: Let Ω = (0, 1)2 be the unit square and let the mesh
consist of Cartesian squares of side length 1/n. Choose Vh ⊂ V based
on bilinear shape functions. Show that the piecewise constant pressure
function pc = ±1 in a checkerboard fashion is in the kernel of BTh , that
is

b(vh, pc) = 0 ∀vh ∈ Vh.

3.2.1 Bubble stabilization and the MINI element

3.2.9 Definition: A simplex T ∈ Rd with vertices x0, . . . , xd is described
by a set of d+ 1 barycentric coordinates λ0, . . . , λd such that

0 ≤ λi(x) ≤ 1 i = 0, . . . , d; x ∈ T (3.7)
λi(xj) = δij i, j = 0, . . . , d (3.8)∑
λi(x) = 1. (3.9)

Remark 3.2.10. The functions λi(x) are the shape functions of the linear P1

element on T . They allow us to define basis functions on the cell T without use
of a reference element T̂ .

Note that λi ≡ 0 on the face opposite to the vertex xi.

Example 3.2.11. We can use barycentric coordinates to define shape functions
on simplicial meshes easily, as in Table 3.1.

3.2.12 Notation: We denote by

Hk
h(P) =

{
v ∈ Hk(Ω)

∣∣v|T ∈ P ∀T ∈ Th
}

(3.10)

the finite element space which is based on the shape function space P,
the mesh Th and is a subspace of Hk(Ω). Examples are the continuous
spaces of piecewise polynomials or tensor product polynomials of degree
k

H1
h(Pk) H1

h(Qk),

and the discontinuous spaces

H0
h(Pk) H0

h(Qk).
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Degrees of freedom Shape functions

ϕi = λi, i = 0, 1, 2

ϕii = 2λ2
i − λi, i = 0, 1, 2

ϕij = 4λiλj j 6= i

ϕiii = 1
2λi(3λi − 1)(3λi − 2) i = 0, 1, 2

ϕij = 9
2λiλj(3λj − 1) j 6= i

ϕ0 = 27λ0λ1λ2

Table 3.1: Degrees of freedom and shape functions of simplicial elements in
terms of barycentric coordinates

3.2.13 Definition: An H1-bubble function on a mesh cell T is a
function b ∈ H1

0 (T ). A bubble space bT on T is a discrete vector space
of such bubble functions. We denote the space of bubble functions on
the mesh Th by

Bh(bT ) =
{
v ∈ H1(Ω)

∣∣v|T ∈ bT ∀T ∈ Th
}
.

If there is no confusion about the local bubble space bT , we also write
just Bh.

Example 3.2.14. A bubble function on a triangle T is easily defined by

b3 = b3,T = λ0λ1λ2. (3.11)

3.2.15 Definition: The MINI element consists of the spaces

Vh =
(
H1
h(P1)⊕Bh(b3)

)2 ∩ V, Qh = H1
h(P1) ∩Q. (3.12)

Its degrees of freedom are:
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3.2.16. We will show now that the MINI element is indeed inf-sup stable. To
this end, we construct the Fortin projection according to Lemma 2.4.12. Since
the construction of such a projection operator turns out a bit complicated,
we first introduce a construction principle, which will help us in our further
analysis. The idea of this principle is separating the interpolation into Vh from
the preservation of the divergence.

3.2.17 Lemma: Let there be operators Π1,Π2 : V → Vh such that

‖Π1v‖V ≤ c1‖v‖V ∀v ∈ V, (3.13)
‖Π2(I−Π1)v‖V ≤ c2‖v‖V ∀v ∈ V, (3.14)
b(v −Π2v, qh) = 0 ∀v ∈ V, qh ∈ Qh, (3.15)

with constants c1 and c2 independent of the discretization parameter h.
Then, the operator

Πh = Π1 + Π2 −Π2Π1 (3.16)

is a Fortin projection, that is, it is bounded on V and

b(v −Πhv, qh) = 0 ∀qh ∈ Qh.

Proof. Boundedness of Πh is obvious, such that we only focus on preservation
of the kernel ob B:

b(v −Πhv, qh) = b(v −Π1v −Π2v + Π2Π1v, qh)

= b(v −Π2v, qh)− b(Π1v −Π2Π1v, qh) = 0− 0 = 0.

3.2.18 Assumption: There exists an H1-stable interpolation operator
Ih : V → Vh such that for each cell T ∈ Th there holds for m = 0, 1

|v − Ihv|m,T ≤ c
∑

T ′∩T 6=∅

h1−m
T ′ |v|1,T ′ , (3.17)

with a constant c independent of the mesh parameter h.

Remark 3.2.19. The interpolation operators of Clément, Scott and Zhang,
Schöberl or Ern and Guermond fullfil these assumptions.
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3.2.20 Definition: A family of meshes {Th} is called locally quasi-
uniform, if there is a constant c such that

∀h ∀T, T ′ ∈ Th T ∩ T ′ 6= ∅ ⇒ hT ≤ chT ′ . (3.18)

3.2.21 Assumption: We assume of all families of meshes that they
are shape regular and locally quasi-uniform, such that with Assump-
tion 3.2.18 there holds for m = 0, 1

|v − Ihv|m,T ≤ ch
1−m
T |v|1,ΩT , (3.19)

where ΩT is the union of all cells with nonempty intersection with T .

3.2.22 Theorem: Under Assumption 3.2.21, the MINI element is inf-
sup stable.

Proof. We construct a Fortin projection by choosing Π1 = Ih, where Ih : V →(
H1
h(P1)

)2 is an H1-stable interpolation operator into the standard linear finite
element space. Now, we construct Π2 : V →

(
Bh
)2 such that for all qh ∈ Qh∫

Ω

∇·(Π2v − v)qh dx =

∫
Ω

(v −Π2v) · ∇qh dx = 0.

Indeed, Π2v can be chosen on each cell. Since ∇qh is constant on a cell T , we
choose ∫

T

Π2vi dx = αT,i

∫
T

b3,T dx =

∫
T

vi dx,

where i = 1, 2 enumerates the velocity components. This is possible, since the
mean value of b3 is strictly positive. Assuming shape regularity, we can use the
inverse estimate for b3 to obtain

‖Π2v‖1,T ≤ ch
−1
T ‖Π2v‖0,T ≤ ch

−1
T ‖v‖0,T .

Finally, we use the estimates for Ih to obtain

‖Π2(I−Π1)v‖1,T ≤ ch
−1
T ‖v − Ihv‖0,T ≤ c|v|1,ΩT .

Since the number of intersecting of cells of shape regular meshes is bounded,
the final term is bounded by ‖v‖1,Ω.
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3.2.23 Notation: We use the abbreviation

(f, g)Th =
∑
T∈Th

(f, g)T , (3.20)

for so called broken bilinear forms, where instead of integrating over
the union of subsets, we sume the integrals.

3.2.24 Lemma: The discretization of the Stokes problem (3.2) with the
MINI element is equivalent to solving

(∇u,∇v) + (∇·v, p) + (∇·u, q)− (cT∇p,∇q)Th
= f(v) + g(q) + (cT fT ,∇q)Th (3.21)

with standard, continuous linear finite elements for velocity and pressure.
Here,

fT =

∫
T

f dx, cT =
(b3, 1)T
‖∇b3‖2T

.

Proof. Let V 1
h = H1

h(P1)2 be the linear, vector-valued velocity space and V bh =
Bh(b3)2 the bubble function space, such that the MINI element space is

Vh = V 1
h ⊕ V bh .

Accordingly, we split the solution with the MINI element into uh = u1
h+ubh. By

integration by parts, we obtain for the cubic bubble b3

(∇v,∇b3,T )T = (−∆v, b3,T )T = 0 ∀v ∈ P1,

such that

(∇v,∇b) = (∇b,∇v) = 0 ∀v ∈ V 1
h , b ∈ V bh .

Thus, testing (3.2) with vh ∈ V 1
h yields(

∇u1
h,∇vh

)
+ (∇·vh, ph) = f(vh) ∀vh ∈ V 1

h . (3.22)

Testing the same equation with v ∈ V bh , we obtain(
∇ubh,∇vh

)
= f(vh)− (∇·vh, ph) = f(vh) + (vh,∇ph)Th . (3.23)

Choosing more specifically vh as the bubble function b3,T of the cell T for each
vector component yields

µ
(i)
T =

1

‖∇b3‖2T
(f + ∂iph, b3)T , (3.24)
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where µ(i)
T is the coefficient in front of the basis function b3,T on cell T in the

basis representation of u(i)
h , such that

ubh =
∑
T∈Th

(
µ

(1)
T b3,T

µ
(2)
T b3,T

)
(3.25)

Testing the Stokes equations with qh ∈ Qh, we obtain the divergence equation(
∇·u1

h +∇·ubh, qh
)

=
(
∇·u1

h, qh
)
−
(
ubh,∇qh

)
Th

= g(qh). (3.26)

Using (3.24), (3.25) and using f (i)
T =

(
f (i), 1

)
T
yields

(
ubh,∇qh

)
Th

=
∑
T∈Th

1

‖∇b3‖2T

∑
i=1,2

(
f

(i)
T + ∂iph, b3(T )∂iqh

)
T

=
∑
T∈Th

(b3, 1)T
‖∇b3‖2T

(fT +∇ph,∇qh)T

Remark 3.2.25. The constant cT in the previous lemma was computed by the
formula

cT =
(b3, 1)T
‖∇b3‖2T

.

This formula is complicated and we would rather like to avoid computing cT
for every mesh cell, since we have to evaluate integrals of cubic functions. On
the other hand, the same constant cT appears on the left and on the right of
the modified equation (3.21). Therefore, we can replace both by a constant of
similar size without affecting consistency or the characteristic properties of the
equation. Therefore, we estimate

cT =
(b3, 1)T
‖∇b3‖2T

'
‖b3‖2T
‖∇b3‖2T

' h2
T , (3.27)

where “'” indicates equality up to a constant independent of h, but depending
on the constant in shape regularity.

Remark 3.2.26. The method introduced in Lemma 3.2.24 is an example for a
stabilized method, here in particular pressure stabilization. Such methods
were particularly popular in the early decades of finite element computation,
since they only involve simple shape function spaces. They are still widely used
due to their simplicity. The method constructed this way is consistent, i. e. ,
the continuous solution (u, p) solves the discrete problem.
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3.2.27 Problem: Show that the MINI element can be generalized to
quadrilateral meshes. Design a bubble space bQ of minimal tensor degree
such that

Vh =
(
H1
h(Q1)⊕Bh(bQ) ∩ V

)2
, Qh = H1

h(Q1) ∩Q.

Discuss extensions to tetrahedra and hexahedra in three dimensions.

3.2.28 Problem: By introducing barycentric coordinates λ0, . . . , λ3 for
a tetrahedron T ⊂ R3 and the quartic bubble

b4,T = λ0λ1λ2λ3, (3.28)

show that the MINI element has a natural generalization to three dimen-
sional problems.

3.2.29. The reasoning behind the MINI element can be applied easily to pres-
sure spaces of higher order. Take for instance the pair Pk−Pk, generalized from
Example 3.2.5. There holds ∇·vh ∈ Pk−1 on each cell, and the term∫

T

∇·vhqh dx

does not control the function in p̂T ∈ Pk which is orthogonal to Pk−1. The only
function ph ∈ Qh such that ph|T = p̂T for each cell T ∈ Th may be zero or not,
depending on the mesh geometry. Thus, the element is not stable on arbitrary
shape regular meshes. But, as we prove below, the same enrichment process by
bubble functions can be employed for its stabilization.

3.2.30 Definition: With any pressure space Qh we associate the bub-
ble space

Bh(bT∇Qh) =
{
v ∈ V

∣∣ ∃qh ∈ Qh : v|T = bT∇qh
}
. (3.29)

Here, bT is a bubble function on T like the cubic buble b3,T of a triangle,
the quartic bubble b4,T , the biquadratic bubble b22,T of a quadrilateral
or the triquadratic bubble b23,T of a hexahedron.
We also define the cell bubble space

BT (∇Qh) =
{
v ∈ L2(T )

∣∣ ∃qh ∈ Qh : v = bT∇qh|T
}
. (3.30)
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3.2.31 Theorem: Assume that the pair Vh × Qh is chosen such
that there is an H1-stable interpolation operator according to Assump-
tion 3.2.18, such that Qh ⊂ C0(Ω), piecewise differentiable, and such
that

Bh(bT∇Qh) ⊂ Vh. (3.31)

Then, the pair Vh ×Qh is inf-sup stable.

Proof. We construct the Fortin projection by Lemma 3.2.17 choosing Π1 as the
H1-stable interpolation operator. The operator Π2 is constructed cell-wise such
that Π2 : H1(T )→ BT (∇Qh) fulfills∫

T

(Π2u− u) · ∇q = 0, ∀q ∈ Qh|T . (3.32)

Clearly, the dimension of BT (∇Qh) equals the dimension of Qh|T . Then, since
the bubble functions are strictly positive inside T , equation (3.32) defines Π2u
uniquely. It remains to show the H1-stability of Π2(I − Π1), which is done by
the standard scaling argument

|Π2v|1,T = |Π̂2v|1,T̂ ≤ c‖v̂‖1,T̂ ≤ c
(
h−1
T ‖v‖0,T + |v|1,T

)
.

3.2.32 Corollary: Let Qh ⊂ Q be continuous and cell-wise differen-
tiable. If

H1
h(P1)d ⊕Bh(bT∇Qh) ⊂ Vh ⊂ V,

then the pair Vh×Qh is inf-sup stable. The same holds on quadrilateral
and hexahedral meshes replacing P1 by Q1.

3.2.2 Elements with discontinuous pressure

3.2.33. In this section, we consider a second stable element, which like the
MINI element is not so much of practical use, but exhibits typical properties of
the analysis of finite element spaces for the Stokes problem.

57



3.2.34 Definition: The P2 −P0 element on triangles consists of the
finite element spaces

Vh = H1
h(P2)2 ∩ V, Qh = H0

h(P0) ∩Q. (3.33)

Its degrees of freedom are:

3.2.35 Lemma: The P2 − P0 element is inf-sup stable.

Proof. We again prove stability by constructing a Fortin projection using the
two step algorithm of Lemma 3.2.17. Again, we choose for Π1 an H1-stable
interpolation according to Assumption 3.2.18. It remains therefore to construct
Π2. First, since qh|T is constant on each cell T ∈ Th, we can apply the Gauss
theorem to the divergence condition to obtain∫

T

∇·(u−Π2u) dx =

∫
∂T

(u−Π2u) · nds. (3.34)

Hence, the following interpolation conditions on each cell T define a divergence
preserving operator Π2:

Π2u(x) = 0 ∀x is vertex of T (3.35)∫
E

Π2uds =

∫
E

uds ∀E is edge of T (3.36)

This is true, since (3.36) implies the right hand side of (3.34). It remains to
show the H1-stability of Π2(I−Π1). Let us first observe that the interpolation
operator only involves edge integrals of u, which are well-defined on H1. Thus,
we have by the standard scaling argument

|Π2v|1,T = |Π̂2v|1,T̂ ≤ c‖v̂‖1,T̂ ≤ c
(
h−1
T ‖v‖0,T + |v|1,T

)
.

Entering v = u−Π1u and the estimates (3.19) of Assumption 3.2.21, we obtain

‖Π2(I−Π1)u‖21 =
∑
T∈Th

‖Π2(I−Π1)u‖21,T ≤ c‖u‖
2
1
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Remark 3.2.36. The proof shows, that from a mathematical point of view
degrees of freedom on edges are more reasonably defined by integrals along the
edge than by values in the mid points. This is something, we will encounter
again and again. Nevertheless, we will not change the cartoons for the degrees
of freedom and just note that a degree of freedom on an edge, while drawn as a
point, may be an integral value.

3.2.37 Theorem: Let (u, p) ∈ V ×Q be a solution to the Stokes problem
and let the pair (uh, ph) ∈ Vh ×Qh be the approximation on a mesh Th
of mesh size h with the P2 − P0 element of Definition 3.2.34. Then, we
have the error estimate

‖u− uh‖1 + ‖p− ph‖0 ≤ c
(
h2|u|3 + h|p|1

)
.

Remark 3.2.38. While this theorem is optimal with respect to our analysis,
it is not optimal with respect to the approximation properties of Vh.

Remark 3.2.39. Let us review the construction principles behind the MINI
element and the P2−P0 element. The uncontrolled pressure modes in ker (B)

T
h

of the P1 − P1 element in Example 3.2.5 were those pressures with alternating
signs at neighboring vertices, such that the mean value of ph is zero on each
cell. Therefore, ph is orthogonal to the constant derivatives of the linear velocity
space. Thus, we add a local function on each cell with nonconstant gradient,
and the mean value of the pressure can be controlled.

The kernel of BTh for the element H1(P1)2−H0(P0) on the other hand contains
functions that are constant on each cell, but jump over cell boundaries. By
integration by parts, we have∫

T

∇·bT qh dx = −
∫
T

bT · ∇qh +

∫
∂T

bT qh ds = 0.

Hence, no kind of bubble function helps controlling the jump of ph over an edge.
Instead, we introduce a degree of freedom on the edge. Integrating by parts on
two neighboring cells T1 and T2, we obtain on the common edge E12 a term of
the form ∫

E12

[u · n1q1 + u · n2q2] ,

which by the continuity of u · n translates to∫
E12

u · n1(q1 − q2). (3.37)

Thus, we can use the interpolation operator Π2 to obtain a function u such that∫
E12

u · n1 ds = (q1 − q2),
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such that

(∇·u, qh) =

∫
E12

|q1 − q2|2 ds+ other terms.

3.2.40 Problem: Show that the quadrilateral element

Vh = H1
h(Q2)2 ∩ V, Qh = H0

h(P0) ∩Q, (3.38)

with degrees of freedom

is inf-sup stable. Does the proof translate to the P2 − P0 element on
tetrahedra or the Q2 − P0 element on hexahedra?

3.2.41. In spite of our remarks above, there is a generalization of the P2 − P0

element involving bubble functions. We will discuss it in an abstract theorem
first and then derive a family of inf-sup stable pairs.

3.2.42 Lemma: Given a space Qh ⊂ Q possibly discontinuous, choose
Vh ⊂ V such that

Bh(bT∇Qh)d ⊂ Vh.

If there is an operator Π1 such that

‖Π1v‖V ≤ ‖v‖V ∀v ∈ V,∫
T

∇·(v −Π1v) dx = 0 ∀v ∈ V, T ∈ Th,

then the pair Vh ×Qh is inf-sup stable.

Proof. We construct the Fortin projection using Π1 and define Π2 only on V 0 =
ker (∇·). This is sufficient, since for any v ∈ V there holds v − Π1v ∈ V 0.
Therefore, define cell-wise Π2 : V 0

|T → BT (bT∇Qh) by the conditions∫
T

∇·(Π2v − v)qh dx = 0 ∀qh ∈ Qh|T . (3.39)
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By this condition, Π2v is divergence free itself. Note that by the Gauss theorem,
the divergence of a bubble function has always zero mean. Therefore, we have
unique solvability and Πhv is well defined. It remains to apply the standard
scaling argument to prove

‖Π2v‖1 ≤ c‖v‖1.

Remark 3.2.43. The divergence condition in the previous lemma is different
from the condition on Fortin projections, since it only involves piecewise con-
stant pressure. Therefore, the lemma in effect splits the pressure space into a
piecewise constant part and its complement. Then, the pressure in the com-
plement is controlled by the bubble functions. It still remains to guarantee the
existence of the operator Π1. In one case, we have verified the existence of such
an operator: the Fortin operator for the P2 − P0 element. Therefore, we have

3.2.44 Corollary: Let Qh ⊂ Q be a space of piecewise differentiable
functions. If for Vh ⊂ V holds

H1
h(P2)2 ⊕Bh(bT∇Qh)2 ⊂ Vh,

then the pair Vh ×Qh is inf-sup stable.

3.2.45 Corollary: Let the space dimension be d = 2 and k ≥ 2. Then,
the spaces

Vh = H1
h(Pk)2 ∩ V, Qk = H0

h(Pk−2) ∩Q, (3.40)

form an inf-sup stable pair.

Proof. For k = 2, this is the P2−P0 element. For k > 2, we have for all qh ∈ Qh
on every cell ∇qh ∈ Pk−3. Therefore, (b3,T qh)|T ∈ Pk.

3.2.46. Studying the proof of Lemma 3.2.35 in more detail, we can find a much
more general result with much weaker assumptions. Indeed, we only need to
be able to have a single degree of freedom on each edge or face which allows to
adjust the average normal velocity over this edge of face. We summarize this
in:
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3.2.47 Theorem: Let Qh ⊂ Q and let Vh ⊂ V be such that there is an
H1-stable interpolation according to Assumption 3.2.18. Furthermore,
let there be a degree of freedom on each edge (face in 3D) controlling the
average normal derivative of u ∈ Vh on this face. Finally, let Vh contain
the bubble space for ∇Qh,

Bh(bT∇Qh)d ⊂ Vh.

Then, the pair Vh ×Qh is inf-sup stable.

Proof. With the assumptions made, it is sufficient to construct the operator Π1

in Lemma 3.2.42. Then, we can apply this lemma and the result is proven.
Going back to (3.34), we see that the interpolation condition (3.36) is more
than needed.

Now, let {NT,i} be the nT node values for the discrete velocity space VT = Vh|T
on the cell T . For convenience, let them be ordered in a way, that the first ones
control the normal derivatives of uh on the faces of the cell, that is,

NT,i =

∫
Fi

u · nds i = 1, . . . , nF , (3.41)

where nF is the number of faces per cell. Given the H1-stable interpolation
operator Ih, define Π2 cell-wise such that

NT,i(Π2u) = NT,i(u) i = 1, . . . , nF (3.42)
NT,i(Π2u) = 0 i = nF + 1, . . . , nT . (3.43)

Choosing the basis on VT which is dual to {NT,i}, we see that this indeed implies

0 =

∫
∂T

(Π2u− u) ds =

∫
T

∇·(Π2u− u) dx.

Therefore, Π1 = Ih + Π2(I− Ih) is divergence preserving. Boundedness follows
by the standard scaling argument.

3.2.48 Corollary: The finite-element pair Vh ×Qh with

Vh = H1
h(Qk)2 ∩ V, Qh = H0

h(Pk−1) ∩Q,

called the Qk − Pk−1 element is inf-sup stable for any k ≥ 2.

Proof. First, we prove that Bh(bT∇Qh)d ⊂ Vh. To this end, we note that on
each cell, we have that the gradient of a discrete pressure qh restricted to this
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cell is in Pk−2 ⊂ Qk−2. The bubble function bT is in Q2, such that bT∇qT ∈ Qk,
which was to be proven.

For the assumption on the degrees of freedom, we refer to the following defini-
tion. Once the degrees of freedom for each velocity component are determined
by this definition, we can simply select the normal component on Cartesian
meshes. On meshes with straight interfaces, it is clear that we can choose a
linear combination of the components of u splitting into normal and tangential
and thus get the desired result. In general, we refer to the Piola transformation
in the next chapter.

3.2.49 Definition: The shape function space Pk on the reference ele-
ment T̂ = [−1, 1] in one dimension can be split into

P0
k ⊕ Pk, (3.44)

where P0
k = Pk ∩ H1

0 (T̂ ). We choose an orthogonal basis for P0
k with

respect to the H1
0 -inner product 〈p, q〉 =

∫
p′q′ dx by

ϕi(x) =

∫ x

−1

Li(t) dt i = 1, . . . , k − 1, (3.45)

where Li is the Legendre polynomial of degree i. The two basis functions
for Pk are chosen such that

ϕ0(−1) = 1, 〈ϕ0, ϕi〉 = 0 i = 1, . . . , k − 1,

ϕk(1) = 1, 〈ϕk, ϕi〉 = 0 i = 1, . . . , k − 1.

3.2.50 Lemma: The degrees of freedom

N0(ϕ) = ϕ(−1), Nk(ϕ) = ϕ(1),

Ni(ϕ) =
1∫
ϕ′i

2

∫ 1

−1

ϕ′ϕ′i dx i = 1, . . . , k − 1,
(3.46)

are the dual basis for the basis described in Definition 3.2.49.

Proof. The proof is left to the reader.
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3.2.51 Definition: Let T̂ = [−1, 1]d be the reference square in Rd. We
define the space

Q0
k = Qk ∩H1

0 (T̂ ). (3.47)

A basis for Q0
k consists of the functions

ϕi1···id(x) = ϕi1(x1) · · ·ϕid(xd), (3.48)

where ij = 1, . . . , k − 1. For a tensor product mesh cell T , the space
Q0
k(T ) = Qk(T ) ∩H1

0 (T ) is defined through Q0
h by mapping.

3.2.52 Definition: The moment degrees of freedom of the Qk element
are defined on the reference cell T̂ in two space dimensions as

N0,i(u) = u(xi) xi is vertex of T̂

N1,i,j(u) =

∫
Ei

uϕj ds ϕj ∈ Q0
k(Ei) Ei is edge of T̂

N2,j(u) =

∫
T̂

uϕj dx ϕj ∈ Q0
k(T̂ ).

3.2.53 Definition: The moment degrees of freedom of the Qk element
are defined on the reference cell T̂ in three space dimensions as

N0,i(u) = u(xi) xi is vertex of T̂

N1,i,j(u) =

∫
Ei

uϕj ds ϕj ∈ Q0
k(Ei) Ei is edge of T̂

N2,i,j(u) =

∫
Fi

uϕj ds ϕj ∈ Q0
k(Fi) Fi is face of T̂

N3,j(u) =

∫
T̂

uϕj dx ϕj ∈ Q0
k(T̂ ).
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3.2.54 Example: The first two members of the Qk − Pk−1 family have
the nodal representations

Remark 3.2.55. When we map the reference square to a quadrilateral mesh
cell, this mapping may be affine for parallelograms or bilinear for general quadri-
laterals. At some point, we have proven that the mapped Qk space has optimal
approximation properties, that is, approximation of order k in H1 and of order
k + 1 in L2. Such a thing has not been proven for a bilinearly mapped Pk
element. And, unfortunately it is not true. We therefore have to distinguish
between a mapped and an unmapped pressure space. In [ABF02], it is proven
that the mapped polynomial space has worse approximation, in the worst case
one order less than the unmapped.

3.2.3 The family of Hood-Taylor elements

3.2.56 Definition: The family of Hood-Taylor elements on simplices in
dimension d = 2, 3 for polynomial degrees k ≥ 1 consists of the pairs

Vh = H1
h(Pk)d ∩ V, Qh = H1

h(Pk−1) ∩Q. (3.49)

On quadrilaterals and hexahedra, it consists of the pairs

Vh = H1
h(Qk)d ∩ V, Qh = H1

h(Qk−1) ∩Q. (3.50)
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3.2.57 Example: The first two members of the Hood-Taylor family on
triangles have the nodal representations

P2 − P1

P3 − P2

3.2.58 Example: The first two members of the Hood-Taylor family on
quadrilaterals have the nodal representations

Q2 −Q1

Q3 −Q2

3.2.59. The stable elements of the previous section featured discontinuous pres-
sure spaces. Therefore, it was natural to split the analysis into cell-wise constant
pressure and higher order. This is the basic technique behind Lemma 3.2.42 and
Theorem 3.2.47. Here, the pressure is continuous, such that a cell-wise analysis
is not feasible anymore. The solution is looking at patches, so called macro
elements. The analysis is due to [Ste90] and consists of three parts: first, the
covering of the domain with a macro element partitioning, then the local sta-
bility on each macro element with respect to an auxiliary norm on the pressure
space, and finally the application of an abstract argument known as Verfürth’s
trick [Ver84].
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3.2.60 Definition: A macro element M ⊂ Th is a union of cells Ti ∈
Th connected by their boundary faces. Given the mappings ΦT : T̂ → T ,
there is a reference macro element M̂ and a mapping ΦM : M̂ →M such
that ΦM (M̂) = M . We say that M is equivalent to M̂ .
We will use the symbolM for the set of cells constituting a macro element
as well as for the subset of Ω covered by their union.

3.2.61 Problem: Suggest reference macro elements M̂ for the following
situations:

1. Two triangles sharing an edge

2. Two quadrilaterals sharing an edge

3. Two hexahedra sharing a face

4. Three quadrialterals at the edge between a coarse cell and a refined
cell

Based on the mappings ΦT from the reference cell to the actual mesh
cells, define a continuously invertible mapping from ΨM : M̂ →M (it is
sufficent to describe the construction without writing a closed formula).
Argue, that under the assumption of shape regularity, all macro elements
M with the same connectivity between their cells are equivalent to the
same reference macro element M̂ .

3.2.62 Definition: For a macro element M , we introduce the spaces

VM =
{
u ∈ H1

0 (M ;Rd)
∣∣ ∃vh ∈ Vh : u = vh|M

}
, (3.51)

QM =
{
p ∈ L2(M)

∣∣ ∃qh ∈ Qh : p = qh|M
}
, (3.52)

the kernel of the discrete, local gradient operator

ker
(
BTM

)
=
{
q ∈ QM

∣∣ ∀v ∈ VM : (∇·v, q) = 0
}
. (3.53)
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3.2.63 Definition: Let Fih be the set of interior faces of the mesh Th.
We introduce the alternative norm on Qh defined by

‖p‖2h =
∑
T∈Th

h2
T ‖∇p‖

2
T +

∑
F∈Fih

‖JpK‖2F , (3.54)

where for a face F between two cells T1 and T2 we define the jump
operator

JpK = p1 − p2. (3.55)

Remark 3.2.64. For continuous pressure spaces, the norm ‖p‖h is simply the
norm of the gradient taken in the interior of all cells.

3.2.65 Definition: On each macro element M , let FiM be the set of
interior faces of M . We define the seminorm

|p|M =
∑
T∈M

h2
T ‖∇p‖

2
T +

∑
F∈FiM

‖JpK‖2F . (3.56)

It is not a norm because QM contains constant functions.

3.2.66 Lemma: Assume that there is a covering of Ω by macro elements
such that every interior face F ∈ Fih is an interior face of one macro
element and each cell T ∈ Th is an element of not more than nO macro
elements. Then, the local stability estimate

sup
v∈VM

(∇·v, q)M
|v|1,M

≥ β̂|q|M ∀q ∈ QM , (3.57)

implies the stability estimate

sup
v∈Vh

(∇·v, q)
‖v‖1

≥ β‖q‖h ∀q ∈ Qh, (3.58)

with a constant β independent of the mesh size h.

Proof. For arbitrarily chosen q ∈ Qh, choose for each M according to assump-
tion (3.57) functions vM ∈ VM with ‖vM‖1 ≤ |q|M such that

(∇·vM , q) = (∇·vM , q)M ≥ β̂|q|
2
M .
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Define v =
∑
vM . Since every face is an interior face of a macro element, every

cell is element of at least one macro element. Hence,

(∇·v, q) =
∑
M

(∇·vM , q) ≥ β̂
∑
M

|q|2M ≥ β̂‖q‖
2
h.

Furthermore, there holds by Poincaré inequality

cS‖v‖1 ≤ |v|1 ≤
∑
M

|vM |1 ≤
∑
M

|q|M ≤ nO‖q‖h.

Thus, the estimate holds with

β =
cS β̂

nO
.

3.2.67 Lemma: Let {M} with M ⊂ Th be a set of macro elements
equivalent to the same reference macro element M̂ . Let the family {Th}
be shape regular and assume that on each macro M the set ker

(
BTM

)
only contains the constant functions. Then, there is a constant βM > 0
independent of h such that for all M there holds

inf
p∈QM

sup
v∈VM

(∇·v, q)M
|v|1,M |q|M

≥ β
M̂
. (3.59)

3.2.68 Problem: Prove Lemma 3.2.67. Furthermore, prove that under
the assumption that there is a finite set of reference macro elements M̂i,
such that all macro elements in a family are equivalent to one of them,
the estimate holds with a uniform constant β > 0.

Remark 3.2.69. Depending on the technique of proof being used, we also may
decide to impose (3.59) directly for each macro element.

Remark 3.2.70. So far, we have proven that under the assumption that the
kernel of the macro problems only contains the constant functions, we have an
inf-sup condition with the pressure norm ‖.‖h. It remains to use Verfürth’s trick
to prove the condition for ‖.‖0.

3.2.71 Lemma: Assume that there is an H1-stable interpolation op-
erator Ih : V → Vh according to Assumption 3.2.21. Then, there are
positive constants c1 and c2 independent of h such that for any qh ∈ Qh
there holds

sup
vh∈Vh

(∇·vh, qh)

‖vh‖V
≥ c1‖qh‖Q − c2‖qh‖h. (3.60)
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Proof. We begin by using the continuous inf-sup condition to deduce that for
arbitrary qh ∈ Qh there is v ∈ V with ‖v‖V ≤ ‖qh‖Q such that

(∇·v, qh) ≥ c1‖qh‖2Q.

Now, let vh = Ihv. Hence,

(∇·vh, qh) = (∇·vh −∇·v, qh) + (∇·v, qh)

≥
∑
T∈Th

(v − vh,∇qh)T +
∑
F∈Fih

([vh − v] · n1, JqhK)F + c1‖qh‖Q

≥ −

∑
T∈Th

h−2
T ‖v − vh‖

2
T +

∑
F∈Fih

h−1
F ‖v − vh‖F

 ‖qh‖h + c1‖qh‖Q

≥ −c|v|1‖qh‖h + c1‖qh‖Q
≥
[
c1‖qh‖Q − c2‖qh‖h

]
‖qh‖Q.

Furthermore, we have by the interpolation estimate

|vh| ≤ c|v| ≤ c‖qh‖Q,

which proves the result by dividing (∇·vh, qh) by the norm of vh.

3.2.72 Lemma: Let the assumptions of Lemma 3.2.71 hold, and assume
that there is a constant β̃ such that

sup
v∈Vh

(∇·v, q)
‖v‖1

≥ β̃‖q‖h ∀q ∈ Qh.

Then, the inf-sup condition

sup
v∈Vh

(∇·v, q)
‖v‖1

≥ β‖q‖Q ∀q ∈ Qh,

holds with β determined by c1, c2 and β̃.

Proof. For any qh ∈ Qh and ϑ ∈ [0, 1] we have

sup
vh∈Vh

(∇·vh, qh)

‖vh‖V
= ϑ sup

vh∈Vh

(∇·vh, qh)

‖vh‖V
+ (1− ϑ) sup

vh∈Vh

(∇·vh, qh)

‖vh‖V
≥ ϑc1‖qh‖Q − c2ϑ‖qh‖h + (1− ϑ)β̃‖qh‖h

≥ c1β̃

c2 + β̃
‖qh‖Q,

by choosing ϑ = β̃/(c2 + β̃).
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3.2.73 Theorem: The Hood-Taylor families are inf-sup stable. Thus,
for solutions u ∈ Hk+1(Ω;Rd) ∩ V and q ∈ Hk(Ω) ∩Q, there holds

‖u− uh‖1 + ‖p− ph‖0 ≤ ch
k
(
|u|k+1 + |p|k

)
. (3.61)

Proof. Summarizing all results of this section, the only thing that is left is
defining a covering of Th with macro elements, such that ker

(
BTM

)
contains

only the constant functions. We do this at the example of the lowest order
elements on quadrilaterals and triangles in the lemmas below. Both kinds of
patches can be used to cover the whole mesh, such that we can use Lemma 3.2.66
and Lemma 3.2.72 to prove the inf-sup condition.

A general proof for higher order elements can be found in [SS96].

3.2.74 Lemma: For the P2 − P1 element choose the patch M as in

T1

T2 T3

•x1

t1

n1 •x2

t2

n2

Then,

ker
(
BTM

)
=
{
q ∈ QM

∣∣ ∀v ∈ VM : b(v, q) = 0
}

= P0. (3.62)

Proof. First, we observe that∇qh is constant on each cell and that the tangential
derivatives ti · ∇qh coincide for both adjacent cells due to the continuity of qh.
Now, we will derive conditions for ker

(
BTM

)
by choosing special test functions

in VM defined through interpolation in the points x1 and x2.

Furthermore, note that the shape function ϕ in P2 associated with the center of
an edge is of the form λ1λ2 using the barycentric coordinates associated to the
vertices at the ends of this edge. This function is positive everywhere inside the
triangle Ti. Hence, there are positive numbers

w1 =

∫
T1

ϕdx, w1 =

∫
T2

ϕdx,
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Now, let u(x1) · t1 = 1, u(x1) · n1 = 0, and u(x2) = 0. Then,

(∇·u, qh)M = −(u,∇qh)M = −(w1 + w2)∇qh · t1.

Hence, qh ∈ ker
(
BTM

)
implies ∇qh · t1 = 0 in T1 and T2.

Exchanging x2 for x1, there holds ∇qh · t2 = 0 in T2 and T3. Since t1 and t2 are
not collinear, we obtain

∇qh|T1
= 0. (3.63)

Now we choose the test function u(x1) · n1 = 1, u(x1) · t1 = 0, and u(x2) = 0.
We get

0 = (∇·u, qh) = −w1∇qh|T1 · n1 − w2∇qh|T2 · n1.

Due to (3.63), the first term vanishes and together with the tangential condition
before, we obtain

∇qh|T2 = 0.

Exchanging again x2 for x1, we have the same for T3, which proves the result.

3.2.75 Lemma: For the Q2 −Q1 element choose the patch M̂ as in

a b

ed

c

f

T1 T2

•x1 •x2•x3

Then,

ker
(
BTM

)
=
{
q ∈ QM

∣∣ ∀v ∈ VM : b(v, q) = 0
}

= P0.

Proof. Choose macro elements consisting of two quadrilateral charing an edge.
Then, the reference macro element M̂ consists of the cells [−1, 0] × [0, 1] and
[0, 1]2. We note that the velocity degrees of freedom are in x1, x2, and x3, while
those for the pressure are in a to f .
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We do the analysis on the reference patch first. There, we have u ∈ Q2
2 and

∇q ∈ Q2
1. Therefore, u · ∇q ∈ Q3 and the Simpson rule is exact on each cell.

Hence

−(∇·u, q)
M̂

= (u,∇q)
M̂

=
4

9
u(x1)∇q(x1) +

4

9
u(x2)∇q(x2) +

4

9
u(x3)∇q(x3).

We first test with velocites such that u(x3) = 0 and one of u1/2(x1/2) is equal
to one. Take for instance u1(x1) = 1. Then, the equation above implies for
q ∈ ker

(
BTM

)
that ∂1q(x1) = 0. Traversing through all four coimbinations, we

obtain

∇q(x1) = ∇q(x2) = 0.

On the cell T2, we have by bilinear interpolation

q(x, y) = q(b)(1− x)(1− y) + q(x)x(1− y) + q(e)(1− x)y + q(f)xy,

and a similar representation on T1. Thus, the conditions above translates to the
system

q(c) + q(f) = q(b) + q(e)

q(b) + q(c) = q(e) + q(f)

q(b) + q(e) = q(a) + q(d)

q(d) + q(e) = q(a) + q(b),

which in tern has solutions given for any α, β ∈ R by

q(a) = q(c) = q(e) = α
q(b) = q(d) = q(f) = β

The kernel of BTM is a subspace of the space generated by α and β. Now we
choose u2(x3) = 1 and all other degrees of freedom zero. Again by simpson rule,
we have

0 = −(∇·u, q) =
4

9
u(x3) · ∇q(x3) =

2

9

(
q(e)− q(b)

)
.

Hence, α = q(e) = q(b) = β and

q ∈ ker
(
BTM

)
⇒ q ∈ P0.

For a patch M equivalent to M̂ , we observe that

−(∇·u, q)M = (u,∇q)M =
∑
i=1,2

∫
T̂i

ûT (∇Φ)−T∇q̂ det(∇Φ) dx̂.

Cramer’s rule implies

(∇Φi)
−T det(∇Φ) =

(
∂2Φ2 −∂1Φ2

−∂2Φ1 ∂1Φ1,

)
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where the mapping Φ is bilinear on each cell. Hence, on T̂

(∇Φi)
−T det(∇Φ)∇q̂ ∈ Q2

1,

such that the integrand above is bicubic and the Simpson rule argument still
applies.

3.2.4 Almost incompressible elasticity

3.2.76. If we discretize the mixed formulation of almost incompressible elastic-
ity with any of the stable Stokes pairs of the preceding sections, we can apply
Corollary 2.5.10 to obtain optimal error estimates. Nevertheless, our problem
with almost incompressible elasticity was not the approximation of the pressure
(which was introduced artificially anyway), but locking. So, how does the choice
of an inf-sup stable pair avoid locking?

Locking, in the terminology developed in the previous chapter, can be described
as the fact that the kernel of the discrete divergence operator is too small, in
the example presented even

ker (B)h = {0}.

Note though, that there might be more subtle locking effects, where the approx-
imation is reduced but not destroyed.

In view of Theorem 2.4.4, locking means that V gh is too small or even the zero
space, and therefore the quasi best-approximation result of this theorem is use-
less, since

inf
wh∈V gh

‖u− wh‖V 6→ 0 as h→ 0.

The additional assumption of the inf-sup condition inTheorem 2.4.7 on the
other hand guarantees that an approximation of the kernel is possible, and
thus, locking becomes impossible.

integration.tex integration.tex

3.2.77 Lemma: Let Vh × Qh be a stable pair for the Stokes problem
admitting a Korn inequality. Let furthermore ΠQ be the L2-projection
onto Qh. Then, the solution uh ∈ Vh to the weak formulation

2µ(ε(uh), ε(v)) + λ(ΠQ∇·uh,Πq∇·v) = (f, v) ∀v ∈ Vh, (3.64)

admits the quasi-optimality estimate

‖u− uh‖1 ≤ c sup
vh∈Vh

‖u− vh‖1, (3.65)

with a constant c independent of the quotient λ/µ.
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Proof. We introduce the auxiliary variable ph ∈ Qh by the condition∫
Ω

∇·uhqh dx =

∫
Ω

phqh dx ∀qh ∈ Qh.

By definition of the L2-projection, we have

(∇·uh, qh) = (ΠQ∇·uh, qh) = (ph, qh).

Since ΠQ∇·uh and ph are in the same space, this implies that ph = ΠQ∇·uh
pointwise. In addition, we observe that

(ph,ΠQ∇·v) = (ph,∇·v).

Hence, the formulation (3.64) is equivalent to

2µ(ε(uh), ε(v)) + (ph,∇·v) = (f, v) ∀v ∈ Vh
(∇·uh, q) − 1

λ (ph, q) = 0 ∀q ∈ Qh.

This is the Stokes problem augmented by a positive definite bilinear form c(., .),
such that Theorem 2.5.4 and Corollary 2.5.10 apply.

Remark 3.2.78. The technique in the previous lemma is often called reduced
integration. This refers to the fact, that we can replace the explicit projection
ΠQ by using a quadrature formula which is exact on Qh, but zero for all higher
order polynomials occuring in ∇·uh.
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Chapter 4

Mixed formulation of elliptic
problems

4.1 Modeling diffusion problems

4.1.1. Diffusion problems arise when a balance law, for instance for mass in
ground water flow or for energy in temperature conduction is coupled with a
constitutive equation relating the direction of movement to the gradient of the
quantity of interest.

4.1.2. Let % be the density of a conserved quantity. Then, for any given volume
we have the “mass”

m =

∫
V

% dx.

Changes of this mass can be due to two processes:

1. Generation of additional mass by a source g,

2. Flow of mass over the boundary of V at a velocity v.

In formulas, we have

d
dtm =

∫
V

g dx−
∮
∂V

J · nds,

also known as Reynolds transport theorem. Here, J is the flux. The exact
form of the flux will be modeled later. The formula above is somewhat unwieldy,
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since it combines volume and surface integrals. Therefore, we apply the Gauss
theorem to obtain

d

dt

∫
V

%dx =

∫
V

g dx−
∫
V

∇·J dx. (4.1)

Concentrating and assuming sufficient regularity, we arrive at the equation

∂t%+∇·J = g. (4.2)

As before in these notes, we ignore the time dependence and only look at sta-
tionary limits. In this case, this reduces to

∇·J = g. (4.3)

Example 4.1.3. Next we consider constitutive relations between % and J such
that we can complement equation (4.3) by a second equation and obtain a
solvable system. To this end, we consider thermal diffusion and ground water
flow.

Heat conduction: Here, the conserved quantity is not the density %, but the
temperature T . Fourier’s law states that the flux is proportional to the
gradient of the temperature, pointing in opposite direction:

J = −k∇T.

The constant of proportionality k is the heat conductivity.

Porous media flow: The conserved quantity is the amount of fluid, repre-
sented by the hydraulic head or pressure p. Darcy’s law says that the
flux is the product of the hydraulic permeability of the media and the
gradient of the pressure:

J = −K∇p.

Here, the permeability K is either a positive scalar function or a symmet-
ric, positive definite matrix. Note that in the latter case, J and ∇p do not
point in the same direction.

General diffusion processes: Fick’s law states, that the flux of a diffusion
process is determined by the gradient of the diffusing quantity p by the
relation

J = −D∇p.

D is the symmetric, positive definite diffusion tensor.
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4.1.4. From the two equations for J , we derive the following system of PDE,
where we replace the letter J by the more familiar u:

K−1u + ∇p = 0
∇·u = f.

(4.4)

This system is closed by boundary conditions. Let ΓD be the Dirichlet boundary
and ΓN be the Neumann boundary such that ΓD ∩ΓN = ∅ and ΓD ∪ΓN = ∂Ω.
Then, we let

p(x) = pD(x) x ∈ ΓD,

u(x) · n = uN (x) · n x ∈ ΓN .
(4.5)

Following the concept of finding spaces such that we have an inf-sup condition,
we are looking for a pair with minimal regularity, such that we have a stable
and bounded inf-sup condition. We begin the usual way by multiplying with a
test function and integrating:∫

Ω

K−1u · v dx +

∫
Ω

∇p · v dx = 0∫
Ω

∇·uq dx =

∫
Ω

fq dx.
(4.6)

It turns out, we have two immediate options: first, we can integrate the first
equation by parts, having all derivatives on u and v. On the other hand, we can
integrate by parts in the second equation, leaving all derivatives on p and q. In
the second case, we obtain the equation

−
∫

Ω

u · ∇q dx+

∫
∂Ω

u · nq ds =

∫
Ω

fq dx.

Applying the boundary condition, we first follow the recipe of elliptic partial
differential equations and implement p = pD as an essential boundary condition,
that is, the test function space has zero trace on ΓD. Then, we can swap in uN
for u on ΓN , such that the boundary term ends up on the right hand side.

4.1.5 Definition: The primal mixed formulation of the mixed dif-
fusion problem (4.4) reads: find (u, p) ∈ V × Q such that for all v ∈ V
and q ∈ Q holds(

K−1u, v
)

+ (∇p, v) = 0
−(u,∇q) = (f, q)−

〈
uN · n, q

〉
ΓN
.

(4.7)

The spaces are

V = L2(Ω;Rd),
Q = H1

ΓD (Ω) =
{
q ∈ H1(Ω)

∣∣ q|ΓD = 0
}
.

(4.8)
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Remark 4.1.6. Since the first equation is tested with the test function v it-
self in all terms, we can eliminate this equation and there holds u = K∇p in
L2(Ω;Rd). Entering this into the second equation, we obtain the well-known
primal formulation

(K∇p,∇q) = (f, q)−
〈
uN · n, q

〉
ΓN
.

Just keep in mind that the “natural boundary condition” in this case is

K∇p · n = 0.

Hence, the primal mixed formulation does not provide any advantages compared
to the primal formulation, and we are not going to pursue it further.

4.1.7. Now we return to the first alternative, namely integrating by parts in
the first equation of (4.6):∫

Ω

K−1u · v dx−
∫

Ω

p∇·v dx+

∫
∂Ω

v · np ds = 0.

Ensuing is a formulation multiplying and integrating the divergences of u and
v, respectively, with functions in Q. In order to fit this into our standard
framework, we have to introduce a new Sobolev space. In addition, since u · n
does not appear as a boundary integral, we must make this an essential boundary
condition. Thus, we require that the test functions have zero normal trace on
ΓN (and justify this below). Note that now the Dirichlet condition p = 0 has
become a “natural boundary condition”!

4.1.8 Definition: Let Ω ⊂ Rd be a domain. We define the Sobolev
space

Hdiv(Ω) =
{
v ∈ L2(Ω;Rd)

∣∣∇·v ∈ L2(Ω)
}
, (4.9)

and its inner product

〈u, v〉Hdiv = (u, v)0 + (∇·u,∇·v)0. (4.10)

Furthermore, let C∞00 (Ω) be the space of smooth functions with compact
support in Ω. Then, we define its closure in Hdiv(Ω):

Hdiv
0 (Ω) = C∞00 (Ω). (4.11)

For subset Γ ⊂ ∂Ω, the space Hdiv
Γ (Ω) is defined accordingly (compare

to H1
Γ(Ω))

Using the space Hdiv and for the moment the assumption, that Hdiv
0 and Hdiv

Γ

serve to set boundary conditions, we can write down our second weak formula-
tion of the mixed diffusion problem:
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4.1.9 Definition: The dual mixed formulation of the mixed diffusion
problem (4.4) reads: find (u, p) ∈ V × Q such that for all v ∈ V and
q ∈ Q holds (

K−1u, v
)
− (p,∇·v) =

〈
pD, v · n

〉
ΓD

(∇·u, q) = (f, q).
(4.12)

The spaces are

V = Hdiv
ΓN (Ω), Q = L2(Ω). (4.13)

4.1.1 Properties of Hdiv(Ω)

4.1.10 Theorem: Let Ω be a bounded Lipschitz domain. Then, the
space C∞(Ω;Rd) is dense in Hdiv(Ω).

Proof. Either by a standard mollifier argument [AF03] or following [GR86, The-
orem 2.4]

Remark 4.1.11. The condition of boundedness entered the assumptions since
we use the space C∞(Ω). It could be dropped, if we used a more appropriate
space (cf. [GR86, Theorem 2.4]).

4.1.12 Theorem: The trace operator γn : C∞(Ω;Rd)→ C∞(∂Ω) which
maps v 7→ v · n|∂Ω can be extended to a continuous, linear mapping

γn : Hdiv(Ω)→ H−1/2(∂Ω), (4.14)

where H−1/2(∂Ω) is the dual of H1/2(∂Ω).

Proof. Let q ∈ C∞(Ω) and v ∈ C∞(Ω;Rd). Then, there holds Green’s formula

(v,∇q)Ω + (∇·v, q)Ω = 〈v · n, q〉∂Ω.

Hence, ∣∣∣∣∫
∂Ω

v · nq ds

∣∣∣∣ ≤ ‖v‖Hdiv‖q‖H1 .
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Applying the density of C∞(Ω) in H1(Ω) and of C∞(Ω;Rd) in Hdiv(Ω), we can
let q and v pass to a limit, but the inequality holds uniformly.

Now apply that H1/2(∂Ω) is the trace space of H1(Ω). Therefore, for any
g ∈ H1/2(∂Ω), there is a q ∈ H1(Ω) such that q|∂Ω = g and ‖q‖1;Ω ≤ ‖g‖1/2;∂Ω.
We obtain∣∣∣∣∫

∂Ω

v · ng ds

∣∣∣∣ ≤ ‖v‖Hdiv(Ω)‖g‖H1/2(∂Ω) ∀v ∈ Hdiv(Ω), g ∈ H1/2(∂Ω).

Hence,

‖v · n‖H−1/2(∂Ω) ≤ ‖v‖Hdiv(Ω) ∀v ∈ Hdiv(Ω).

Thus, we have proven the continuity of the extension of γn to Hdiv(Ω).

Remark 4.1.13. The trace theorem tells us that our interpretation of the
spaces Hdiv

0 (Ω) and Hdiv
Γ (Ω) as spaces with zero boundary condition of the

normal component is justified. This notion will be fortified by the two theorems
below. Therefore, we will later avoid the notational overhead of using γn and
will simply write v · n|∂Ω.

4.1.14 Problem: Show the following result. Let p ∈ H1(Ω) and ∆p ∈
L2(Ω). Then, ∂np ∈ H−1/2(∂Ω) and

(∇p,∇q) = −(∆p, q) + 〈∂np, q〉∂Ω ∀q ∈ H1(Ω).

4.1.15 Theorem: The trace theorem is optimal in the sense that
γn : Hdiv(Ω)→ H−1/2(∂Ω) is surjective.

Proof. Let µ ∈ H−1/2(∂Ω). We have to show that there exists v ∈ Hdiv(Ω)
such that

v · n = µ on ∂Ω and ‖v‖Hdiv(Ω) ≤ ‖µ‖H−1/2(∂Ω).

We know that the problem

−∆ϕ+ ϕ = 0 in Ω,

∂nϕ = µ on ∂Ω,

has a unique solution ϕ ∈ H1(Ω) with

‖ϕ‖2H1(Ω) = 〈µ, ϕ〉∂Ω ≤ ‖µ‖H−1/2(∂Ω)‖ϕ‖H1(Ω).
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The first equation then implies ∆ϕ ∈ L2(Ω) and thus v = ∇ϕ ∈ Hdiv(Ω). Since
from this equation there even holds ∇·v = ϕ, we obtain

‖v‖Hdiv(Ω) ≤ ‖µ‖H−1/2(∂Ω).

4.1.16 Theorem: There holds

ker (γn) = Hdiv
0 (Ω). (4.15)

Proof. The inclusion Hdiv
0 (Ω) ⊂ ker (γn) follows immediately from the definition

and continuity of γn. For the opposite inclusion, we have to show that the traces
of functions in C∞00 (Ω) are dense in ker (γn). We do this by using, that a subspace
W is dense in a space V if and only if all linear functionals vanishing on W also
vanish on V . Choose u ∈ ker (γn) and use the Riesz representation theorem to
associate with it L ∈ ker (γn)

∗ by

L(v) = 〈u, v〉Hdiv ∀v ∈ ker (γn) .

Assume now that L(ϕ) = 0 for all ϕ ∈ C∞00 (Ω;Rd). This implies by

0 = L(ϕ) = (u, ϕ)L2 + (∇·u,∇·ϕ),

that u = ∇∇·u in distributional sense, and by taking limits of ϕ in H1 that
∇·u ∈ H1(Ω). Hence, Green’s formula yields

L(v) = (∇∇·u, v) + (∇·u,∇·v) = 〈v · n,∇·u〉∂Ω = 0 ∀v ∈ ker (γn) .

Thus, L vanishes on all elements of ker (γn) and the theorem is proven.

4.1.17 Theorem: Let Ω be connected. Let

V0 =
{
v ∈ Hdiv

0 (Ω)
∣∣∇·v = 0

}
. (4.16)

Then,

L2(Ω;Rd) = V0 ⊕ V ⊥, (4.17)

and

V ⊥ =
{
v = ∇q

∣∣q ∈ H1(Ω)
}
. (4.18)
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Proof. Let X = {v = ∇q|q ∈ H1(Ω)}. we have to show V ⊥ = X. Observe that
X is closed in L2 since H1 is complete. We show that V0 = X⊥ and thus

V ⊥0 = (V ⊥0 )⊥ = X = X.

First, let u ∈ V0. Then, Green’s formula reduces to

(u,∇q) = 0 ∀q ∈ H1(Ω).

Hence, V0 ⊂ X⊥. Let now conversely u ∈ L2(Ω;Rd) such that the previous
identity holds. Choosing q ∈ C∞00 (Ω) yields ∇·u = 0, which in turn means
u ∈ Hdiv(Ω). Therefore, we can use Green’s formula to obtain u · n = 0 on ∂Ω.
This together implies u ∈ V0, proving X⊥ ⊂ V0.

4.1.2 Well-posedness of the dual mixed formulation

4.1.18. In order to apply the theory from Chapter 2, we have to define the ab-
stract bilinear forms a(., .) and b(., .). We read from the dual mixed formulation

a(u, v) =
(
K−1u, v

)
b(v, q) = (∇·v, q).

4.1.19 Problem: In both the primal and the dual mixed formulation,
we ignored inhomogeneous essential boundary conditions. Show that the
usual lifting method applies. Determine the modified equations and the
spaces needed for the liftings.

4.1.20 Lemma: Let V = Hdiv(Ω) and Q = L2(Ω) with their norms.
Let

V0 = ker (B) =
{
v ∈ V

∣∣(∇·v, q) = 0 ∀q ∈ Q
}
. (4.19)

Assume there exist constants γ and ‖a‖ such that

γ|ξ|2 ≤ ξTK−1ξ ≤ ‖a‖|ξ|2 ∀ξ ∈ Rd. (4.20)

Then, there holds

a(u, v) ≤ ‖a‖‖u‖V ‖v‖V ∀u, v ∈ V (4.21)

a(u, u) ≥ γ‖u‖2V ∀u ∈ ker (B) . (4.22)

Remark 4.1.21. Differing from the Stokes problem, ellipticity of a(., .) cannot
be extended to the whole space V . This is going to be the major difference
between this chapter and the previous.
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4.1.22 Lemma: Let V = Hdiv(Ω) and Q = L2(Ω) with their norms.
Then, the inf-sup condition

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β (4.23)

holds with a constant β depending on the domain.

Proof. We can use the construction leading to Corollary 3.1.7. In fact, since the
norm of Hdiv is weaker than the one of H1, the same function v can be chosen
in the Stokes inf-sup condition (3.1), yielding a constant β not worse than for
Stokes.

Combining these lemmas yields the assumptions of Theorem 2.3.3. Thus, we
have proven:

4.1.23 Theorem: Under the assumptions on Lemma 4.1.20, the dual
mixed formulation is well-posed.

4.2 Discretization of dual mixed problems

4.2.1 Conforming subspaces of Hdiv(Ω)

4.2.1. Our goal in this section is the derivation of general criteria applying to
the approximation of Hdiv(Ω) by piecewise polynomial functions. This affects
in particular continuity conditions and the properties of ker (Bh).

As be before, we will assume that all families of meshes Th for h → 0 are
shape-regular. We will also assume that meshes are regular, unless otherwise
stated.

4.2.2 Lemma: Let Th be a subdivision of the domain Ω. Let the space
Vh be cell-wise polynomial. We have Vh ⊂ Hdiv(Ω) if and only if on each
interior face F between two cells T1 and T2 holds

v1 · n1 + v2 · n2 = 0. (4.24)

Here, v1 and v2 are the traces of the functions on F from each cell.
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Proof. Since Vh is by definition finite dimensional, all norms are bounded. It
remains to show that the distributional divergence is in L2(Ω), that is, all its
contributions which are Borel measures of faces vanish. To this end, let ϕ ∈
C∞00 (Ω) be a test function such that its support does not have a nonempty
intersection with any face except F . Then, we have by Green’s formula for
u ∈ Vh

(∇·u, ϕ) = −(u,∇ϕ) + 〈u1 · n1 + u2 · n2, ϕ〉F

We have ∇·u ∈ L2(Ω) if and only if the face term vanishes.

4.2.3 Problem: Show that the corresponding condition for H1-
conforming finite elements is continuity of the function. In particular,
this implies continuity at vertices.

Remark 4.2.4. The continuity of the normal component over faces does not
imply continuity at vertices, since it is not transferred in tangential direction.

As a consequence of this remark, part of the construction of Hdiv-conforming
finite element spaces consists of defining a polynomial trace space on each face,
such that continuity of normal traces can be established by this space.

4.2.5. In Lemma 4.1.20, we saw that the bilinear form a(., .) is elliptic only on
the kernel of B. Indeed, for the simplest case with K ≡ 1, we conclude that the
uniform estimate for vh ∈ ker (Bh)

‖vh‖2L2 ≥ γ‖vh‖2Hdiv = γ
(
‖vh‖2L2 + ‖∇·vh‖2L2

)
,

necessary for quasi-bestapproximation requires a constant c independent of h
such that

‖∇·vh‖2L2 ≤ c‖vh‖2L2 ∀vh ∈ ker (Bh) .

The inverse estimate is insufficient by two powers of h, such that this is actually
a hard condition. Therefore, we focus on methods where

ker (Bh) ⊂ ker (B) . (4.25)

Remark 4.2.6. A particularly elegant way to achieve (4.25) is the choice

∇·Vh = Qh. (4.26)

We will indeed focus on methods with this property.
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4.2.2 Finite elements on simplices

4.2.7. Simplicial elements based on the polynomial spaces Pk of polynomials of
total degree less or equal k can be defined on the actual mesh cell. We present
here the two most common families.

4.2.8 Definition: The Raviart-Thomas element of degree k ≥ 0 on
simplices consists of the polynomial space

RTk = Pdk + xPk. (4.27)

Its node functionals are

N1,i,j(v) =

∫
Fi

v · n qj ds qj ∈ Pk(Fi) Fi ⊂ ∂T, (4.28)

N2,i(v) =

∫
T

v · wi dx wi ∈ Pdk−1(T ). (4.29)

Here, and in further definitions of this kind, the notation qj and wi
indicate that we choose a basis for the polynomial spaces.

Remark 4.2.9. In equation (4.28), the Fi are all faces of the simplex, that is,
three edges in two dimensions and four triangular faces in three dimensions.

If the simplex T is obtained by affine transformation from the reference simplex
T̂ , the definitions of the space RTk directly on the cell T and by mapping from
T̂ coincide. Therefore, we can use arguments by mapping or without at our
convenience.

For k = 0 there are no nodal values of type N2,i since all gradients of functions
in P0 are zero.

The unisolvence will be shown in Lemma 4.2.13. But first, we have to look at
some important properties.
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4.2.10 Example: The first members of the Raviart-Thomas family on
triangles are

4.2.11 Lemma: For any simplex T ∈ Rd we have for any v ∈ RTk and
any F ⊂ ∂T

∇·v ∈ Pk(T ), (4.30)
v · n|F ∈ Pk(F ). (4.31)

The divergence operator is surjective from RTk to Pk, hence

∇·RTk = Pk. (4.32)

For the divergence free functions holds

RTk,0 =
{
v ∈ RTk

∣∣∇·v = 0
}
⊂ Pdk. (4.33)

Proof. We write an arbitrary element v ∈ RTk as v = v0 + xpk where v0 ∈ Pdk
and pk ∈ Pk. Clearly, ∇·v0 ∈ Pk−1. On the other hand,

∇·(xpk) = ∇·xpk + x∇pk = dpk + xq,

where q ∈ Pdk−1. Therefore, ∇·(xpk) ∈ Pk and so is ∇·v.

For a given face F , choose x0 ∈ F . Every other point x ∈ F can be represented
as x = x0 + τ , where τ is a vector tangential to F . Therefore, using the same
splitting of v as above

v · n = v0 · n+ pk(x · n) = v0 · n+ pk(x0 · n+ τ · n).
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The last term vanishes by definition of τ and n and the two other terms are
both in Pk.

Finally, we show surjectivity of the divergence operator. We show indeed that
the divergence is surjective from Ṽ = (x − xc)Pk to Pk, where xc is the center
of T . Note that xcPk ∈ Pdk such that Ṽ ⊂ RTk. Furthermore, Ṽ and Pk have
the same dimension. Therefore, it is sufficient to show that the divergence is
injective. For simplicity, we assume xc = 0. Then, for any p ∈ Pk∫

T

∇·(xp)p dx = d

∫
T

p2 dx+

∫
T

x · ∇pp dx

= d

∫
T

p2 +
1

2

∫
T

x · ∇(p2) dx

=
d

2

∫
T

p2 +
1

2

∫
∂T

(x · n)p2 ds.

Thus, ∇·(xp) = 0 implies p = 0 and thus xp = 0, which proves the injectivity.
Using the same idea, we see that ∇·v = 0 for v = v0 + xp implies xp = 0 and
thus v = v0 ∈ Pdk.

4.2.12 Lemma: There for the simplicial Raviart-Thomas element in Rd
there holds

dimRTk = (d+ 1) dimPk − dimPk−1

= (d2 + kd+ d)
(k + d− 1)!

d!k!
.

(4.34)

In particular,

dimRTk =

{
(k + 1)(k + 3) d = 2,
1
2 (k + 1)(k + 2)(k + 4) d = 3.

(4.35)

Proof. First, we observe that

RTk = Pdk ⊕ xP̆k,

where P̆k is the space of homogeneous polynomials of degree k, that is, those
strictly of degree k. There also holds

Pk = Pk−1 ⊕ P̆k.

Hence,

dimRTk = ddimPk + dim P̆k = ddimPk + dimPk − dimPk−1,
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which proves the general formula. Using

dimPk =
1

d!

(k + d)!

k!
=

{
(k+1)(k+2)

2 d = 2,
(k+1)(k+2)(k+3)

6 d = 3,
(4.36)

proves the explicit formulas.

4.2.13 Lemma: The Raviart-Thomas element with the nodal values in
Definition 4.2.8 is unisolvent.

Proof. As usual, the proof consists of two parts: first, we prove that the number
of node functionals equals the dimension of RTk. To this end, we observe that

dimPk(Rd) =
1

d!

(k + d)!

k!
=
k + d

d
dimPk(Rd−1). (4.37)

The number of node functionals is

N = (d+ 1) dimPk(Rd−1) + ddimPk−1(Rd)

= (d+ 1)
(k + d− 1)!

(d− 1)!k!
+ d

(k + d− 1)!

d!(k − 1)!

= (d2 + d+ kd)
(k + d− 1)!

d!k!

Thus, the number of node functionals is equal to the dimension of RTk. There-
fore, every element in RTk is uniquely determined by the node functionals if
and only if for v ∈ RTk{

N1,i,j(v) = 0 ∀i, j
N2,i(v) = 0 ∀i

}
=⇒ v = 0.

To this end, we first observe that due to (4.31) the node functionals N1,i,j for
j = 1, . . . ,dimPk(Fi) uniquely determine v on each face Fi. Therefore,{

N1,i,j(v) = 0 ∀i, j
}

=⇒ v ∈ Hdiv
0 (T ).

Next, we test (4.29) with w = ∇q and q ∈ Pk arbitrary. After integration by
parts, this implies v ∈ RTk,0 ∩Hdiv

0 (T ) ⊂ Pdk.

For the remaining part of the proof, we need a result which will be presented
later in full generality. At this point, we only mention that in two dimensions,
the space V0 of divergence free functions in L2(T ) has the representation

V0 =
{
∇×ϕ

∣∣ ϕ ∈ H1(T )
}
, ∇×ϕ =

(
∂2ϕ
−∂1ϕ

)
(4.38)
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We also notice that v ·n = ∂τϕ, where τ is the tangential vector with the domain
T on the right. Thus, v ∈ Hdiv

0 (T ) implies ϕ is constant on the boundary. Since
moreover we only use derivatives of ϕ, we can choose ϕ ∈ H1

0 (T ). Finally, since
v ∈ RTk,0, we have ϕ ∈ Pk+1. Any function ϕ with these properties can be
expressed by the cubic bubble function as

ϕ = bTψ ψ ∈ Pk−2.

We conclude the proof with

0 =

∫
T

v · w dx =

∫
T

∇×ϕ · w dx =

∫
T

bTψ(∂2w − ∂1w) dx.

Choose w such that ∂2w − ∂1w = ψ to obtain ψ = 0.

4.2.14 Definition: The BDM element (Brezzi-Douglas-Marini) of
degree k ≥ 1 on simplices consists of the polynomial space

BDMk = Pdk. (4.39)

Its node functionals are

N1,i,j(v) =

∫
Fi

v · n qj ds qj ∈ Pk(Fi) Fi ⊂ ∂T, (4.40)

N2,i(v) =

∫
T

v · ∇qi dx qi ∈ Pk−1(T ). (4.41)

N3,i(v) =

∫
T

v · wi dx wi ∈ Vk,0(T ), (4.42)

where

Vk,0(T ) =
{
v ∈ Pdk(T ) ∩Hdiv

0 (T )
∣∣ ∇·v = 0

}
. (4.43)
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4.2.15 Example: The first members of the BDM family on triangles
are

4.2.16 Lemma: The BDM element with the nodal values in Defini-
tion 4.2.14 is unisolvent.

Proof. Let v ∈ BDMk(T ). First, we note that ∇·BDMk ⊂ Pk−1. Therefore,
setting the node functionals in (4.40) and (4.41) to zero implies v ∈ V0,k. But
then, the remaining node functionals are an inner product on V0,k and thus
v = 0.

Remark 4.2.17. What is missing here is a characterization of the space V0,k.
Thus, we cannot really implement the method yet. Furthermore, we cannot
verify that the node functionals form a dual basis for BDMk(T ). The answer
to these questions will be given in Chapter 6.2.

4.2.3 Stability by commuting diagrams

4.2.18. Again, we show stability by constructing a Fortin projection. To this
end, we show that the nodal interpolation of the Raviart-Thomas and BDM
families indeed commute with the divergence operator. We first show that
this holds for smooth functions and then discuss the extension to functions in
Hdiv(Ω).
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4.2.19 Definition: Let a finite element be defined by its shape function
space PT and the node functionals Ni for i = 1, . . . , n where n = dimPT .
Let {ϕj} be the basis of PT such that

Ni(ϕj) = δij i, j = 1, . . . , n.

Then, the operator Ih : C∞(T )→ PT defined for any f ∈ C∞(T ) by

Ih(f) =

n∑
i=1

Ni(f)ϕi, (4.44)

is called the canonical interpolation operator. The definition applies
to vector valued elements replacing C∞(T ) by C∞(T ;Rd).

Remark 4.2.20. For a vector polynomial space VT , we define its divergence
space

PT = ∇·VT .

From Lemma 4.2.11, we obtain

∇·RTk = Pk. (4.45)

For the BDM family, it is easy to verify

∇·BDMk = Pk−1.

4.2.21 Lemma: Let Ih : C∞(T ;Rd) → VT be the canonical interpola-
tion onto the space VT , which is either RTk(T ) or BDMk+1(T ). Let
PT = ∇·VT = Pk and Πh : C∞(T )→ PT be the L2-projection onto PT .
Then, the diagram

C∞(T ;Rd) ∇·−−−−→ C∞(T )

Ih

y yΠh

VT
∇·−−−−→ PT

(4.46)

commutes, that is, for any v ∈ C∞(T ;Rd), there holds

∇·(Ihv) = Πh(∇·v). (4.47)

Proof. Let v ∈ C∞(T ;Rd) and q ∈ C∞(Ω) be chosen arbitrarily. Then,∫
T

q(∇·(Ihv)−∇·v) dx =

∫
T

(v − Ihv) · ∇q dx−
∫
∂T

(v − Ihv) · nq ds
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Let now q ∈ PT chosen as

q = Πh(∇·(Ihv)−∇·v).

Then, the left hand side of the equation above becomes ‖∇ · (Ihv) − Πh(∇·
v)‖2T . The first integral on the right vanishes by testing (4.29) with ∇q and
by testing (4.41) with q, respectively. The same holds for the second integral
using the node values in equations (4.28) and (4.40), respectively. Thus, we
have proven ∇·(Ihv) = Πh(∇·v).

Remark 4.2.22. The next natural step is the extension of Ih to Hdiv(Ω).
Then, Ih would be our Fortin projection. Unfortunately, this is not possible,
as the following example shows. Meanwhile, we note that the operator Ih is
well-defined on the space Ṽ = Hdiv(Ω) ∩Hs(Ω;Rd) for any s > 0. Thus, if the
domain allows for an inf-sup condition of the form

inf
q∈Q

sup
v∈Ṽ

(∇·v, q)
‖v‖Ṽ ‖q‖Q

≥ β > 0,

then we are done here. The case of minimal regularity will require us to ex-
tend the ideas of the Clément interpolant to commuting interpolation operators,
which will be done in Chapter 6.2.

Example 4.2.23. The trace theorem involves the space H−1/2(∂Ω), which re-
quires a short discussion. On one dimensional boundaries, elements inH1/2(∂Ω)
have continuous representatives. The situation in three dimensions is similar,
where no jumps across a line, for instance between two faces is allowed. There-
fore, functions in H−1/2(∂Ω) cannot be localized to parts of the boundary, for
instance the edge of a cell.

We give an example (modified from [BFB13, Section 2.5.1]) of this phenomenon.
On the disc D around the origin of radius e−1 consider the function

u(x, y) = ln
(
− ln

(√
x2 + y2

))
.

There holds u ∈ H1
0 (D). Now, consider the domain Ω consisting only of the

upper half circle:

Ω =
{

(x, y) ∈ R2
∣∣x2 + y2 < e−2 and y > 0

}
∂Ω = [−e−1, e−1]× {0} ∪

{
(x,
√
e−2 − x2)

∣∣x ∈ (−e−1, e−1)
}

Thus, the trace of u on the boundary is in H1/2(∂Ω). We now define µ ∈
H−1/2(∂Ω) as the distributional derivative in tangential direction, say counter-
clockwise,

〈µ, ϕ〉 = −
∫
∂Ω

u∂τϕ ∀ϕ ∈ C1(∂Ω).
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Computation yields

µ(x) =
1

x ln|x|
×


1 x ∈ (−e−1, 0)

−1 x ∈ (0, e−1)

0 x 6∈ (−e−1, e−1).

Both integrals ∫ 0

−e−1

µ(x) dx

∫ e−1

0

µ(x) dx,

are not bounded, such that on these parts of the boundary, µ cannot even be
tested with a constant function. Now, we consider the integral

〈µ, ϕ〉 =

∫ e−1

−e−1

ln(− ln|x|)∂τϕdx.

If we split ϕ into an odd and an even part, the integral with the even part
vanishes, since ln(− ln|x|) is even and the derivative is odd. Therefore,

〈µ, ϕ〉 =

∫ e−1

−e−1

ϕodd(x)

x ln|x|
dx

Finally, we use the fact that ϕodd(0) = 0 and that it’s growth is limited by its
regularity. In order to be square integrable, the growth of ϕodd must be limited
by a positive, fractional power,

|ϕodd(x)| ≤ c|x|α, α > 0.

Then, ∫ e−1

0

|ϕodd(x)|
x ln|x|

dx ≤ xα−1

ln|x|
dx <∞.

4.2.24. Very much like the construction of Clément for H1(Ω), we define in-
terpolation operators stable on Hdiv(Ω) by replacing the face integrals by vol-
ume integrals. We only have to make sure we do not destroy conformity with
Hdiv(Ω), in particular continuity of normal components. But, this can be
achieved by integrating over both cells adjacent to a face and using this in-
tegral for interpolation.
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4.2.25 Definition: An Hdiv-stable interpolation operator is obtained
from Definition 4.2.19 of the canonical interpolation

1. by choosing the standard degrees of freedom for every cell integral
as in (4.29), (4.41), and (4.42), and

2. by replacing every face integral as in (4.28) and (4.40) by integrals
of the form ∫

F

f · n q ds→ cq

∫
ΩF

f · n q dx, (4.48)

where ΩF consists of the cells sharing F and cq is a normalization
constant.

Summarizing the results from this section and applying the general theory, in
particular Corollary 2.4.6 and Theorem 2.4.7, we obtain

4.2.26 Theorem: Let Vh ⊂ V ⊂ Hdiv(Ω) and Qh ⊂ Q be chosen
such that an Hdiv-stable commuting interpolation operator exists. Then,
the solutions (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh admit the quasi-
optimality estimates

‖u− uh‖Hdiv ≤ c1 inf
v∈Vh
‖u− vh‖Hdiv (4.49)

‖p− ph‖L2 ≤ c2 inf
v∈Vh
‖u− vh‖Hdiv + c3 inf

q∈Qh
‖p− qh‖L2 . (4.50)

4.2.27 Corollary: The elements RTk and BDMk+1 with their matching
pressure space Pk admit the error estimates

‖u− uh‖L2 ≤ chk+1|u|Hk+1,div (4.51)

‖∇·u−∇·uh‖L2 ≤ chk+1|u|Hk+1,div (4.52)

‖p− ph‖L2 ≤ chk+1
(
|u|Hk+1,div + |p|Hk+1

)
, (4.53)

where

|u|2Hk+1,div = |u|2Hk+1 + |∇·u|2Hk+1 . (4.54)

4.2.4 Finite elements on quadrilaterals and hexahedra

4.2.28. Shape functions for quadrilaterals and hexahedra can only be defined on
a reference cell. But, when mapping from a reference cell T̂ to the actual mesh
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cell T , we have to preserve the information whether a vector field is normal
or tangential to a face. To this end, we recapitulate the basic notation and
properties of the transformation of scalar fields and then add the definition for
vector fields in Hdiv(Ω).

4.2.29 Notation: Let T̂ be a reference cell, either the reference simplex
spanned by {0, e1, . . . , ed} or the reference hypercube [−1, 1]d. Then,
a mesh cell T ∈ Th is defined as the image of T̂ under a mapping Φ
(we suppress the index T and understand that Φ is different for every
cell). We define the Jacobi matrix, the Jacobi determinant, and the face
Jacobian

DΦ(x̂) =
(
∂jΦi

)
, J(x̂) = det DΦ(x̂), Jn(x̂) = J |DΦ−T (x̂)n̂|,

(4.55)

The basic relations are for x̂ ∈ T̂ and shape functions p̂:

x = Φ(x̂), p(x) = p̂(x̂) ∇p(x) = DΦ−T (x̂)∇̂p̂(x̂). (4.56)

Integrals transform as∫
T

pdx =

∫
T̂

p̂J dx̂

∫
∂T

p ds =

∫
∂T̂

p̂Jn dŝ.

4.2.30 Definition: The Piola transform or contravariant transforma-
tion of a vector field under the mapping Φ: T̂ → T is the mapping

v(x) = 1
JDΦv̂(x̂). (4.57)

There holds

∇v(x) = 1
JDΦ

[
∇̂v̂(x̂)

]
DΦ−1, ∇·v(x) = 1

J∇̂·v̂(x̂). (4.58)

4.2.31 Lemma: Let q be a scalar function and v be a contravariant vec-
tor field mapped by the Piola transform. Then, cell and surface integrals
are transformed according to the rules∫

T

v · ∇q dx =

∫
T̂

v̂ · ∇̂q̂ dx̂,∫
T

q∇·v dx =

∫
T̂

q̂∇̂·v̂ dx̂,∫
∂T

qv · n ds =

∫
∂T̂

q̂v̂ · n̂ dŝ.

(4.59)
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4.2.32 Problem: Verify Lemma 4.2.31.

Remark 4.2.33. The last equation of the previous lemma indicates, that the
Piola transform preserves normal components of a vector field. Thus, it can be
used to define shape functions for normal continuity on a reference cell.

4.2.34 Notation: The space of tensor product polynomials Qk in d
space dimensions is

Qk(Rd) = Pk(R)⊗ · · · ⊗ Pk(R)︸ ︷︷ ︸
d factors

,

q(x1, . . . , xd) =

d∏
i=1

pi(xi) pi ∈ Pk(R).

(4.60)

Similarly, we define anisotropic tensor product polynomials

Qk1,...,kd(Rd) = Pk1
(R)⊗ · · · ⊗ Pkd(R)︸ ︷︷ ︸

d factors

,

q(x1, . . . , xd) =

d∏
i=1

pi(xi) pi ∈ Pki(R).

(4.61)

4.2.35 Definition: The Raviart-Thomas element of degree k ≥ 0
on the reference cell T̂ = [−1, 1]d consists of the polynomial space

RT[k](T̂ ) = Qdk(T̂ ) + xQk(T̂ ). (4.62)

Its node functionals are

N1,i,j(v) =

∫
Fi

v · n qj ds qj ∈ Qk(Fi) Fi ⊂ ∂T̂ , (4.63)

N2,i(v) =

∫
T̂

v · wi dx wi ∈ Qk−1,k...k × · · · ×Qk...k,k−1. (4.64)
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4.2.36 Lemma: There holds

dimRT[k] = d(k + 1)d−1(k + 2), (4.65)

and

∇·RT[k] = Qk. (4.66)

Furthermore, for each F ⊂ T̂ and each v ∈ RT[k](T̂ )there holds

v · n|F ∈ Qk. (4.67)

Proof. The proof of this lemma is exactly the same as the one of Lemma 4.2.11.

4.2.37 Example: The first members of the Raviart-Thomas family on
quadrilaterals are

The construction principle of the Raviart-Thomas element on simplices as well
as on rectangles and cubes can be seen as adding vector polynomials to the
velocity space until its divergence is equal to Pk or Qk. The principle of the
BDM elements is the opposite: Starting from the polynomial spaces for triangles,
we add divergence free shape functions until we achieve continuity of the normal
component over all edges. We give their definitions on squares and cubes.
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4.2.38 Definition: The BDM element of degree k ≥ 1 on the reference
cell T̂ = [−1, 1]2 consists of the polynomial space

BDM[k] = P2
k ⊕ span

{
∇×(xk+1y),∇×(xyk+1

}
. (4.68)

Its node functionals are

N1,i,j(v) =

∫
Fi

v · n qj ds qj ∈ Pk(Fi) Fi ⊂ ∂T̂ , (4.69)

N2,i(v) =

∫
T̂

v · wi dx wi ∈ P2
k−2. (4.70)

4.2.39 Example: The first members of the Brezzi-Douglas-Marini fam-
ily on quadrilaterals are

4.2.40 Lemma: The dimension of the space BDM[k] is

dimBDM[k] = (k + 1)(k + 2) + 2. (4.71)

The element in Definition 4.2.38 is unisolvent.

4.2.41 Problem: Prove Lemma 4.2.40.

4.2.42 Corollary: Let the mesh be such that each cell is obtained by
affine transformation from the reference cell T̂ . Then, Theorem 4.2.26
applies and we obtain quasi-bestapproximation.
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Remark 4.2.43. If the mapping of the cells is not affine, we do not have

∇·Vh = Qh.

Indeed, on each cell, we have

∇·Vh = 1
JQh, (4.72)

where the Jacobi determinant J is not constant. As a consequence, Lemma 4.2.21
about the commuting diagram property does not apply directly anymore and
indeed, approximation may suffer [ABF05]. In particular, it is shown there that
for the RT[k] on general quadrilateral meshes, which do not converge to affine
meshes as h→ 0, there holds

inf
vh∈Vh

‖u− vh‖ = O(hk+1),

inf
vh∈Vh

‖∇·u−∇·vh‖ = O(hk).

The optimal approximation of the divergence can be recovered by enriching the
space like the Arnold-Boffi-Falk element below.

4.2.44 Definition: The Arnold-Boffi-Falk element of degree k ≥ 0
on the reference cell T̂ = [−1, 1]2 consists of the polynomial space

ABFk(T̂ ) = Qk+2,k ×Qk,k+2 (4.73)

Its node functionals are

N1,i,j(v) =

∫
Fi

v · n qj ds qj ∈ Qk(Fi) Fi ⊂ ∂T̂ , (4.74)

N2,i(v) =

∫
T̂

v · wi dx wi ∈ Qk−1,k × · · · ×Qk,k−1, (4.75)

N3,x,i(v) =

∫
T̂

∇·v(xiyk+1) i = 1, . . . , k, (4.76)

N3,y,i(v) =

∫
T̂

∇·v(xk+1yi) i = 1, . . . , k. (4.77)

Remark 4.2.45. Degrees of freedom in this section have been written as mo-
ments with respect to polynomials in Pk or Qk, which is natural in this context
and allows for an easy proof of the commutating diagram property of the Fortin
projection. On the other hand, degrees of freedom based on point interpolation
are sometimes more natural for the implementation.

In one dimension, for instance for the integration over edges, we realize that

N1,i,j(v) =

∫
F

v · n qj ds =

k+1∑
`=1

ω`v(x`) · n q(x`),
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for any Gauss-Legendre or Gauss-Lobatto quadrature rule on F . What was left
unspecified in the definition of the element was the choice of a basis {qj} for Pk.
From the point of view of moments, it is natural to choose Legendre polynomials
as a basis. But, we can also choose the basis which is orthogonal with respect
to the quadrature rule, which is up to the weights a Lagrange basis. Thus, we
can transform the moment degrees of freedom back to interpolating degrees of
freedom easily.

This construction extends automatically to tensor product space Qk. For poly-
nomials space Pk, suitable quadrature sets on triangles and quadrilaterals must
be constructed.
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Chapter 5

Divergence conforming
discontinuous Galerkin
methods

5.0.1. In the previous chapter, we studied discretizations with ∇·Vh = Qh with
two advantages. First, due to Corollary 2.4.6 the velocity error is independent
of the pressure. Second, the divergence converges faster than the gradient. A
natural question arising is whether we can do something similar for the Stokes
problem. There, the equation

(∇·vh, qh) = 0 ∀qh ∈ Qh,

would immediately imply ∇·vh = 0, that is, the discrete solution is exactly
divergence free.

The answer to this question is a current research topic. So far, beginning with
the element by Scott and Vogelius, several methods have been proposed for spe-
cial mesh geometry or macro meshes. The difficulty is balancing the condition
∇·Vh = Qh with the H1-conformity of the velocity space. All the spaces in
the previous chapter were only Hdiv-conforming with discontinuous tangential
components.

A fairly simple solution to this question though can be obtained by using dis-
continuous Galerkin methods. These were introduced to obtain formulations
consistent with H1 while not conforming. Thus, we can apply them directly
to Raviart-Thomas and Brezzi-Douglas-Marini elements to obtain a consistent
method with divergence free solutions.

We begin this chapter by a quick review of the interior penalty method before
diving into divergence conforming methods.
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5.1 The interior penalty method

5.1.1. We review the basic definitions necessary to describe discontinuous Galerkin
(DG) methods. In particular, we need the sets of faces Fh of a mesh, discontin-
uous piecewise polynomial spaces and broken integrals.

5.1.2 Definition: Let Th be a mesh of Ω ⊂ Rd consisting of mesh cells
Ti. For every boundary facet F ⊂ ∂Ti, we assumea that either F ⊂ ∂Ω or
F is a boundary facet of another cell Tj . In the second case, we indicate
this relation by labeling this facet Fij . The set of all facets Fij is the set
of interior faces Fih. The set of facets on the boundary is F∂h.

aThis assumption can indeed be relaxed

5.1.3 Definition: The discontinuous finite element space on Th is con-
structed by concatenation of all shape function spaces PT for T ∈ Th
without additional continuity requirements:

Vh =
{
v ∈ L2(Ω)

∣∣v|T ∈ PT ∀T ∈ Th
}
. (5.1)

5.1.4 Definition: For any set of cells Th or faces Fh, we define the
bilinear forms

(u, v)Th =
∑
T∈Th

(u, v)T , (5.2)

〈u, v〉Fh =
∑
F∈Fh

〈u, v〉F . (5.3)

(5.4)

5.1.5. We start out with the equation

−∆u = f.

Integrating by parts on each mesh cell yields

(−∆u, v)T = (∇u,∇v)T − 〈∂nu, v〉∂T = (f, v)T .

We realize that the choice of discontinuous finite element spaces introduces a
consistency term on the interfaces between cells and on the boundary.

On interior faces, there is the issue that u and ∂nu actually have two values on
the interface, one from the left cell and one from the right. Therefore, we have
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to consolidate these two values into one. To this end, we introduce the concept
of a numerical flux, which constructs a single value out of these two. Thus, we
introduce on the interface F between two cells T+ and T−

F(∇u) =
∇u+ +∇u−

2
=: {{∇u}}.

Using 〈∂nu, v〉 = 〈∇u, vn〉 we change our point of view and instead of integrating
over the boundary ∂T , we integrate over a face F between two cells T+ and
T−. Adding up integrals from both sides, we obtain the term

−
〈
{{∇u}}, v+n+ + v−n−

〉
F

= −2〈{{∇u}}, {{vn}}〉F .

On boundary faces, we simply get

〈∂nu, v〉F .

Adding over all cells and faces, we obtain the equation

(∇u,∇v)Th − 2〈{{∇u}}, {{vn}}〉Fih − 〈∂nu, v〉F∂h = (f, v)Ω.

Following the idea of Nitsche, we symmetrize this term to obtain

(∇u,∇v)Th − 2〈{{∇u}}, {{vn}}〉Fih − 2〈{{un}}, {{∇v}}〉Fih
− 〈∂nu, v〉F∂h − 〈u, ∂nv〉F∂h = (f, v)Ω − 〈u

o, ∂nv〉F∂h .

Here the second term on the right was introduced for consistency. Finally, it
turns out that this method is not stable and needs stabilization by a jump
term. This will be done in Definition 5.1.8. Before, we introduce the notation
for averaging and jump operators.

5.1.6 Notation: Let F be a face between the cells T+ and T−. Let n+

and n− = −n+ be the outer normal vectors of the cells at a point x ∈ F .
For a function u ∈ Vh, the traces u+ and u− of u on F taken from the
cell T+ and T− are defined as:

u+(x) = lim
ε↘0

u(x− εn+),

u−(x) = lim
ε↘0

u(x− εn−).

We define the averaging operator {{.}} and the jump operator J.K as

{{u}} =
u+ + u−

2
, JuK = u+ − u−. (5.5)

Not that the sign of the jump of u depends on the choice of the cells T+

and T−. It will only be used in quadratic terms.
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Remark 5.1.7. The jump can be denoted as the mean value of the product of
a function and the normal vector,

JuK = 2{{un}} · n+ = −2{{un}} · n−. (5.6)

5.1.8 Definition: The interior penalty methoda uses the bilinear
form

ah(u, v) = (∇u,∇v)Th + 〈σh JuK , JvK〉Fih + 〈σhu, v〉F∂h
− 2〈{{∇u}}, {{vn}}〉Fih − 2〈{{un}}, {{∇v}}〉Fih

− 〈∂nu, v〉F∂h − 〈u, ∂nv〉F∂h , (5.7)

and the linear form

fh(v) = (f, v)Ω −
〈
uD, ∂nv

〉
F∂h

+
〈
σhu

D, v
〉
F∂h
, (5.8)

where f is the right hand side of the equation and uD the Dirichlet
boundary value.

aAlso known as symmetric interior penalty (SIPG) or IP-DG.

5.1.9 Definition: On the space Vh we define the norm ‖.‖1,h by

‖v‖21,h =
∑
T∈Th

‖∇v‖2T +
∑
F∈Fih

‖
√
σh JvK‖2F +

∑
F∈F∂h

‖
√
σhv‖2F . (5.9)

5.1.10 Problem: Prove that the norm defined in (5.9) is indeed a norm
on Vh.

5.1.11 Lemma: Let Th be shape-regular and chosen on each face F as
σh = σ0/hF , where hT is the minimal diameter of a cell adjacent to F .
Then, there is a σ0 > 0 such that there exists a constant γ > 0, such
that independent of h there holds

ah(uh, uh) ≥ γ‖uh‖21,h ∀uh ∈ Vh. (5.10)

5.1.12 Problem: Prove Lemma 5.1.11.
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5.1.13 Lemma: Let f ∈ L2(Ω) and let the boundary conditions admit
that for the solution to

−∆u = f in Ω,

u = uD on ∂Ω,

there holds u ∈ H1+ε(Ω) for a positive ε. Then, the interior penalty
method is consistent, that is,

ah(u, vh) = fh(vh) ∀vh ∈ Vh. (5.11)

Proof. From f ∈ L2(Ω) we deduce that ∇u ∈ Hdiv(Ω). Thus, with the extra
regularity, the traces of ∂nu on faces are well-defined and coincide from both
sides. The remainder is integration by parts.

5.1.14 Theorem: For k ≥ 1 let Pk ⊂ PT and u ∈ Hs+1(Ω) with 1/2 ≤
s ≤ k. Then, the interior penalty method admits the error estimate

‖u− uh‖1,h ≤ ch
s|u|s+1. (5.12)

If furthermore the boundary condition admits elliptic regularity, there
holds

‖u− uh‖0 ≤ ch
s+1|u|s+1. (5.13)

5.1.1 Bounded formulation in H1

5.1.15. The interior penalty method introduced so far is Vh-elliptic and consis-
tent, but it is not bounded on H1(Ω). This was a reason, why we could not use
standard techniques for the proof of the convergence result and after applying
consistency had to estimate each term separately.

In this section, we will introduce a reformulation of the interior penalty method,
which is equivalent to the original method on Vh, but is also bounded in H1(Ω).
As an unpleasant side effect, it turns out that this method is inconsistent, and
we have to estimate the consistency error.

The main technique applied here is the use of lifting operators, such that the
traces of derivatives on faces can be replaced by volume terms. Note that
the lifting operators, while very useful for the analysis of the method, are not
actually used in the implementation of the interior penalty method.
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5.1.16 Definition: Define the auxiliary space

Σh =
{
τ ∈ L2(Ω;Rd)

∣∣∀T ∈ Th : τ|T ∈ ΣT
}
, (5.14)

where ΣT is a (possibly mapped) polynomial space chosen such that
∇VT ⊂ ΣT . Then, we define the lifting operator

L : V + Vh → Σh (5.15)

by

(L v, τ)Th = 2〈{{τ}}, {{vn}}〉Fih + 〈τ · n, v〉F∂h . (5.16)

5.1.17 Lemma: The lifting operator is a bounded operator from L2(Fh)
to Σh, such that

‖L v‖L2(Ω) ≤ c
∥∥∥ 1√

h
JvK
∥∥∥
Fih

+
∥∥∥ 1√

h
v
∥∥∥
F∂h
. (5.17)

In particular, it is bounded on H1(Ω).

Proof. It is clear, that the operator is bounded on L2(Fh), since its definition
involves face integrals weighted with polynomial functions. The dependence on
the mesh size is due to the standard scaling argument.

5.1.18 Definition: The interior penalty method with lifting opera-
tors uses the bilinear form

ah(u, v) = (∇u,∇v)Th − (L u,∇v)Th − (∇u,L v)Th
+ 〈σh JuK , JvK〉F−h + 〈σhu, v〉F∂h . (5.18)

and the linear form (5.8) of the original interior penalty method. Its
residual operator is

Res(u, v) = ah(u, v)− (f, v). (5.19)

5.1.19 Lemma: The interior penalty method in flux form (Defini-
tion 5.1.8) and in lifting form (Definition 5.1.8) coincide on the discrete
space Vh if Σh is chosen such that ∇Vh ⊂ Σh.
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Proof. Since ∇Vh ⊂ Σh, ∇uh and ∇vh are valid test functions in the defini-
tion (5.16) of the lifting operator, and the equality

(L uh,∇vh)Th = 2〈{{uhn}}, {{∇vh}}〉Fih + 〈uh, ∂nvh〉F∂h .

5.1.20 Definition: Let V ⊂ H1(Ω) and let u, u∗ ∈ V solve the primal
and dual problems

a(u, v) = f(v), a(v, u∗) = ψ(v), ∀v ∈ V, (5.20)

with a bounded, V -elliptic bilinear form a(., .). For a discrete bilinear
form ah(., .) defined on V + Vh, we define the primal and dual residual
operators

Res(u, v) = ah(u, v)− f(v),

Res∗(u∗, v) = ah(v, u∗)− ψ(v).
(5.21)

5.1.21 Lemma: Let ah(., .) be a bounded bilinear form on V + Vh and
elliptic on Vh with norm ‖.‖Vh and constant γ. Then, the error u − uh
admits the estimate

‖u− uh‖Vh ≤
1

γ
‖Res(u, .)‖V ∗h +

(
1 +
‖ah‖
γ

)
inf

wh∈Vh
‖u− wh‖ (5.22)

Proof. First, by the definition of the residual, we have the error equation

ah(u− uh, vh) = Res(u, vh), ∀vh ∈ Vh. (5.23)

Inserting wh − wh for an arbitrary element wh ∈ Vh, we obtain

ah(wh − uh, vh) = Res(u, vh)− ah(u− wh, vh), ∀vh ∈ Vh.

Using vh = wh − uh and ellipticity, we obtain

γ‖wh − uh‖2Vh ≤ ah(wh − uh, wh − uh)

= Res(u,wh − uh)− ah(u− wh, wh − uh)

≤
(
‖Res(u, .)‖V ∗h + ‖ah‖‖u− wh‖Vh

)
‖wh − uh‖Vh .

Hence, by triangle inequality

‖u− uh‖Vh ≤
1

γ
‖Res(u, .)‖V ∗h +

(
1 +
‖ah‖
γ

)
inf

wh∈Vh
‖u− wh‖Vh
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5.1.22 Lemma: Let u ∈ V be the solution to the Poisson equation with
right hand side f ∈ L2(Ω). Assume u ∈ Hs(Ω) with s > 3/2. Then, we
have for v ∈ V + Vh:

(f, v) = (∇u,∇v)Th − 2〈∇u, {{vn}}〉Fih − 〈∂nu, v〉F∂h . (5.24)

Proof. We set out from the strong form of the Poisson equation and integrate
by parts.

(f, v) = (−∆u, v) = (∇u,∇v)Th −
∑
T∈Th

〈∂nu, v〉∂T .

Under the regularity assumptions of the lemma, all of these integrals make sense
at least as duality pairings. In particular, ∂nu ∈ L2(∂T ), and thus we can split
∂T into individual faces. Therefore,∑

T∈Th

〈∂nu, v〉∂T = 2〈∇u, {{v ⊗ n}}〉Fih + 〈∂nu, v〉F∂h .

The proof concludes by collecting the results.

5.1.23 Lemma: Let k ≥ 1 and let Vh such that Pk−1 ⊂ ΣT . Then, if
u ∈ Hk+1(Ω) and v ∈ V + Vh, there holds

|Res(u, v)| ≤ chk|u|k+1

(
‖
√
σh JvK‖Fih + ‖

√
σhv‖F∂h

)
≤ chk|u|k+1‖v‖1,h.

(5.25)

Proof. First, we observe that by the regularity assumption, JuK = 0 and thus,
L u = 0. Hence,

ah(u, v) = (∇u,∇v)Th − (∇u,L v)Th .

By Lemma 5.1.22 and regularity of u,

Res(u, v) = 2〈∇u, {{vn}}〉Fih + 〈∂nu, v〉F∂h − (∇u,L v)Th

= 2〈{{∇u}}, {{vn}}〉Fih + 〈∂nu, v〉F∂h − (∇u,L v)Th

= 2〈{{∇u}}, {{vn}}〉Fih + 〈∂nu, v〉F∂h − (ΠΣh∇u,L v)Th ,

where ΠΣh is the L2-projection. Now, we can apply the definition of the lifting
term to obtain

Res(u, v) = 2
〈

1
σh
{{∇u−ΠΣh∇u}}, σh{{vn}}

〉
Fih

+
〈

1
σh

(∇u−ΠΣh∇u) · n, σhv
〉
F∂h
.
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Application of standard approximation and trace estimates yields the result
observing that σh = σ0/h.

5.1.24 Theorem: Let k ≥ 1 and Vh such that Pk ⊂ VT . Let u ∈
Hk+1(Ω) be the solution to the continuous Poisson problem. Let ah(., .)
be the interior penalty method with lifting operators such that ∇Vh ⊂
Σh. Then, there holds

‖u− uh‖1,h ≤ ch
k|u|k+1. (5.26)

Proof. Application of Lemma 5.1.21, Lemma 5.1.23, and standard interpolation
results.

5.1.25 Theorem: Let the assumptions of Theorem 5.1.24 hold and in
addition assume that the problem

a(v, u∗) = ψ(v), ∀v ∈ V,

admits the elliptic regularity estimate

‖u∗‖H2(Ω) ≤ c‖ψ‖L2(Ω). (5.27)

Then, there holds

‖u− uh‖L2(Ω) ≤ ch
k+1|u|Hk+1(Ω). (5.28)

Proof. The proof uses the duality argument by Aubin and Nitsche, which sets
out solving the auxiliary problem

a(v, u∗) = (u− uh, v), ∀v ∈ V.

Using the definition of the dual residual, we obtain the equation

(u− uh, v) = ah(v, u∗)− Res∗(u∗, v), ∀v ∈ V + Vh.

Testing with v = u− uh yields

‖u− uh‖2 = ah(u− uh, u∗)− Res∗(u∗, u− u∗).

Additionally, we us the error equation

ah(u− uh, vh) = Res(u, vh),
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tested with vh = Ihu
∗, to obtain

‖u − uh‖2 = ah(u − uh, u
∗ − Ihu

∗) − Res∗(u∗, u − uh) + Res(u, Ihu
∗).

Using the regularity of u∗, the first term on the right admits the estimate

|ah(u− uh, u∗ − Ihu∗)| ≤ ‖u− uh‖1,h‖u
∗ − Ihu∗‖1,h ≤ ch‖u− uh‖1,h.

For the second term, we use Lemma 5.1.23 to obtain

|Res∗(u∗, u− uh)| ≤ ch|u∗|2‖u− uh‖1,h.

Finally, using Ju∗K = 0, the same lemma yields

|Res(u, Ihu
∗)| ≤ ch|u|2

(
‖
√
σh JIhu∗K‖Fih + ‖

√
σhIhu

∗‖F∂h
)

= ch|u|2
(
‖
√
σh Ju∗ − Ihu∗K‖Fih + ‖

√
σh(u∗ − Ihu∗)‖F∂h

)
≤ ch|u|2h

k|u∗|k+1

Using the energy estimate in Theorem 5.1.24 we can conclude the prove.

5.2 Divergence conforming IP

Remark 5.2.1. The extension of the interior penalty method to vector-valued
problems is obvious. Furthermore, since the method generates an elliptic bi-
linear form on the discontinuous space Vh, this ellipticity is inherited by any
subspace of Vh ∩Hdiv(Ω). Thus, we can write down the weak formulation of a
divergence conforming DG method for the Stokes equations. In the following
definition, we assume slip or no-slip boundary conditions, that is, v · n = 0 on
the whole boundary.

5.2.2 Definition: A divergence conforming DG method for the Stokes
equations consists of a discrete velocity space Vh ⊂ Hdiv

0 (Ω) and a pres-
sure space Qh ⊂ L2

0(Ω) such that

∇·Vh = Qh. (5.29)

Using the interior penalty bilinear form ah(., .), we search for solutions
(uh, ph) ∈ Vh ×Qh such that for all (v, q) ∈ Vh ×Qh there holds

ah(uh, v) + (∇·v, ph) + (∇·uh, q) = f(v). (5.30)
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Remark 5.2.3. Due to the fact that Vh 6⊂ V , we have introduced the norm
‖.‖1,h on Vh. In particular, the norm ‖.‖1 is not defined for all elements of Vh.
Therefore, we need a modification of Fortin’s lemma (Lemma 2.4.12), where
the norm on the left hand side of the stability estimate (2.53) uses the discrete
norm, namely,

‖ΠVhv‖Vh ≤ c‖v‖V ,

5.2.4 Lemma: Let {Th} be a shape-regular sequence of meshes. Then,
the canonical interpolation operators of the Brezzi-Douglas-Marini and
Raviart-Thomas elements admit the bound

‖Ihv‖1,h ≤ c|v|1 (5.31)

Proof. First, we note that all degrees of freedom are defined as cell or face
integrals with smooth weight functions. Thus, they are bounded on H1. Thus,
since the local polynomial spaces are finite dimensional, there holds on the
reference cell T̂ and its faces F̂ :

‖IT̂ v‖1;T̂ ≤ c|v|1;T̂ ,

‖IT̂ v‖0;F̂ ≤ c|v|1;T̂ .

On shape regular meshes, we have the scaling property

|f |m;T ' h
d
2−m
T ,

|f |m;F ' h
d−1

2 −m
F ,

such that for a face F of cell T

‖IT v‖1;T ≤ c|v|1;T ,

‖IT v‖0;F̂ ≤ ch
1
2 |v|1;T .

We conclude

‖Ihv‖21,h ≤
∑
T∈Th

[
‖IT v‖21;T + 4

∑
F⊂∂T

∥∥∥ σ0

hF
IT v

∥∥∥2

0;F

]
≤ c|v|21.
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5.2.5 Corollary: Assume that the inf-sup condition (3.1) in Theo-
rem 3.1.8 holds. Then, the method in Definition 5.2.2 admits the inf-sup
condition

inf
qh∈Qh

sup
vh∈Vh

(∇·vh, qh)

‖vh‖1,h‖qh‖0
≥ β, (5.32)

with a constant β > 0 independent of h.

Proof. First, we make use of the fact that qh ∈ Qh ⊂ Q to deduce from Theo-
rem 3.1.8 the there is a function w ∈ V with ∇·v = qh and ‖v‖1 ≤ ‖qh‖0. To
this function, we apply the Fortin operator to define vh = Ihv. By the preceding
lemma, we have

‖vh‖1,h ≤ c‖v‖1 ≤ ‖qh‖0,

which proves the inf-sup condition.

5.2.6 Theorem: Assume that (uh, ph) ∈ Vh × Qh is the solution to
the divergence conforming DG method in Definition 5.2.2 and that the
continuous Stokes problem is well-posed as in Theorem 3.1.8. Then,
for the Raviart-Thomas pairs RTk/Pk and RT[k]/Qk with k ≥ 1 and u
sufficiently smooth there holds

‖u− uh‖1,h ≤ h
k|u|k+1, (5.33)

‖p− ph‖0 ≤ h
k
(
|u|k+1 + |p|k

)
. (5.34)

Furthermore,

∇·uh = 0. (5.35)

Proof. The proof follows the lines of the abstract theory of Theorem 2.4.4 and
Theorem 2.4.7. But since the setting with Vh 6⊂ V exceeds the assumptions of
the abstract theory, we adapt the proofs instead of using the results.

Due to consistency of the method, we have

ah(u− uh, vh) + (∇·vh, p− ph) + (∇·u−∇·uh, qh) = 0.

Testing with vh = 0 and using ∇·Vh = Qh immediately yields ∇·uh = ∇·u = 0,
or

ker (Bh) ⊂ ker (B) .
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In order to use the ellipticity of ah(., .), we insert arbitrary functions wh ∈
ker (Bh) and rh ∈ Qh. Choosing qh = 0 yields the error equation

ah(uh − wh, vh) + (∇·vh, ph − rh) = ah(u− wh, vh) + (∇·vh, p− rh). (5.36)

Testing with vh = uh − wh and employing ∇·vh = 0, we obtain

γ‖uh − wh‖21,h ≤ ah(uh − wh, uh − wh) = ah(u− wh, uh − wh).

Now, we use the canonical interpolation wh = Ihu to obtain

γ‖uh − wh‖21,h ≤
γ

2
‖uh − wh‖21,h +

c

2γ
h2k|u|2k+1.

Finally, we use the inf-sup condition to find a test function vh ∈ Vh such that
∇·vh = ph−rh and β‖vh‖1,h ≤ ‖ph−rh‖. Then, the error equation (5.36) yields

‖ph − rh‖ =
(∇·vh, ph − rh)

‖ph − rh‖

=
ah(u− uh, vh) + (∇·vh, p− rh)

‖ph − rh‖
≤ ‖ah‖β ‖u− uh‖1,h + ‖p− rh‖0.

Using the previously proven error estimate for uh and the L2-projection rh =
Πhp yields the result.

5.3 Error estimates by duality

5.3.1. So far, we have only considered estimates in the so called energy norm,
that is, a norm such that ah(., .) is bounded and elliptic1.

In the context of elliptic equations, we have seen the duality argument of Aubin
and Nitsche, which allows us to obtain optimal estimates in weaker norms, for
instance in L2.

A particular difficulty here is the fact, that we have to test the dual solution with
the error and exploit some kind of Galerkin orthogonality. Thus, we cannot use
consistency as before and will introduce residual operators later. The analysis
here is a simplified version of the corresponding results in [GKR14].

5.3.2 Definition: The dual problem to the Stokes problem in weak for
consists of finding (u∗, p∗) ∈ Vh ×Qh such that for all v ∈ V and q ∈ Q
there holds

(∇v,∇u∗) + (∇·u∗, q) + (∇·v, p∗) = (ψ, v). (5.37)

1We use the term energy norm loosely here. Strictly speaking, the energy norm would be
‖v‖A =

√
ah(v, v).
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5.3.3 Assumption: The dual Stokes problem admits the elliptic regu-
larity estimate

‖u∗‖2 ≤ c‖f‖0. (5.38)

Remark 5.3.4. Like for scalar elliptic equations, the elliptic regularity as-
sumption holds for domains with smooth boundary or with piecewise smooth
boundary where every corner is convex.

5.3.5 Definition: For the solutions (u, p) ∈ V × Q and (u∗, p∗) ∈
V ×Q of the primal and dual Stokes problem, respectively, we define the
residual operators

Res(u, p; v) = ah(u, v) + (∇·v, p)− (f, v), (5.39)
Res∗(v;u∗, p∗) = ah(v, u∗) + (∇·v, p∗)− (ψ, v), (5.40)

for v ∈ V + Vh.

5.3.6 Lemma: Let (u, p) ∈ V ×Q be the solution to the Stokes problem
with right hand side f ∈ L2(Ω;Rd). Assume u ∈ Hs(Ω;Rd) and p ∈
Hs−1(Ω) with s > 3/2. Then, we have for v ∈ V + Vh:

(f, v) = (∇u,∇v)Th − 〈∇u, {{v ⊗ n}}〉Fih − 〈∂nu, v〉F∂h + (∇·v, p). (5.41)

Proof. We set out from the strong form of the Stokes equations and integrate
by parts.

(f, v) = (−∆u+∇p, v)

= (∇u,∇v)Th −
∑
T∈Th

〈∂nu, v〉∂T − (∇·v, p).

Under the regularity assumptions of the lemma, all of these integrals make sense
at least as duality pairings. In particular, ∂nu ∈ L2(∂T ), and thus we can split
∂T into individual faces. Therefore,∑

T∈Th

〈∂nu, v〉∂T = 〈∇u, {{v ⊗ n}}〉Fih + 〈∂nu, v〉F∂h .

The proof concludes by collecting the results.
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5.3.7 Corollary: The residual operators can be expressed as

Res(u, p; v) = ah(u, v)− (∇u,∇v)Th
+ 〈∇u, {{v ⊗ n}}〉Fih + 〈∂nu, v〉F∂h .

Res∗(u∗, p∗; v) = ah(v, u∗)− (∇u,∇v)Th
+ 〈∇u, {{v ⊗ n}}〉Fih + 〈∂nu, v〉F∂h .

(5.42)

In particular, the residual operators do not depend on the pressure so-
lutions.

5.3.8 Theorem: Let the assumptions of Theorem 5.2.6 and Assump-
tion 5.3.3 hold. Then,

‖u− uh‖0 ≤ ch
k+1|u|k+1. (5.43)

5.3.9 Problem: Adapt the proof of Theorem 5.1.25 to prove Theo-
rem 5.3.8.
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Chapter 6

Maxwell’s equations and the
de Rham complex

6.1 Maxwell’s equations

6.1.1 Notation: With ∇×u we describe the curl of a vector field u,
which in three dimensions is defined as

∇×u =

∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

 . (6.1)

In two dimension, we distinguish between the vector curl of a scalar
function and the scalar curl of a vector function

∇×u = ∂1u2 − ∂2u1, ∇×ϕ =

(
∂2ϕ
−∂1ϕ

)
. (6.2)

Remark 6.1.2. The scalar curl of a two-dimensional vector field is equal to
the third component of the extension of this vector field by zero into R3, in
formulas,

∇×
(
u1

u2

)
= ∇×

u1

u2

0


3

.

Similarly, the vector curl of a scalar function ϕ in two dimensions consistes of
the first two components of the curl of a three dimensional function in the last
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component of t he vector,

∇×ϕ = ∇×

0
0
ϕ


1,2

.

Remark 6.1.3. A popular error in the literature consists of the following ar-
gument: since ∇·E = 0, there also holds ∇∇·E = 0. Therefore, we can use the
formula

∆u = ∇∇·u−∇×∇×u,

and avoid the div-curl-problem alltogether. Unfortunately, this is only true, if
solutions of (6.7) are inH1(Ω;Rd), which is not true, depending on the boundary
conditions.

6.1.4 Lemma: For vector fields u, v ∈ C1(Ω), there holds∫
Ω

∇×u · v dx =

∫
Ω

u · ∇×v dx+

∫
∂Ω

(n× u) · v ds. (6.3)

6.1.5. Electromagnetic fields are governed by four laws of nature put together
by James Clerk Maxwell to a single system. The laws are

1. Gauss’ law for the electric field: the electric flux through a closed surface
equals 1/ε times the electric charge enclosed by the surface:∫

∂V

E · n ds =

∫
V

%

ε
dx.

2. There are no magnetic monopoles, therefore the magnetic flux through
any closed surface vanishes: ∫

∂V

B · nds = 0.

3. Faraday’s law of induction: the voltage induced in a closed loop is pro-
portional to the rate of change of the magnetic field through the surface
encloded by the loop:∫

∂A

E · ds = − d

dt

∫
A

B · nds.

4. Ampère’s law: the magnetic field induced in a closed loop is proportional
to the electric current plus the change of electric field through that loop:∫

∂A

B · ds = µ

∫
A

J · nds+ µε
d

dt

∫
A

E · nds.
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Using the Gauss theorem for the first two and the Stokes theorem for the re-
maining two laws, we obtain the Maxwell equations of electromagnetics

∇·E =
%

ε
∇×E = −∂tB, (6.4)

∇·B = 0 ∇×B = µJ + µεE. (6.5)

They are an hyperbolic system of equations and typically have wave solutions.
Many simplifications have been developed to suit particular purposes.

6.1.6. An important simplification of the Maxwell equations is obtained by
assuming an isolating material, that is, the electric current J vanishes. Addi-
tionally, we may assume that there are no electric charges, such that ∇·E = 0.
Then, taking the curl of the equation for ∇×E and inserting the formula for
∇×B, we obtain

µε∂2
tE +∇×∇×E = 0 ∇·E = 0. (6.6)

We can even go further and study the stationary limit

∇×∇×E = 0 ∇·E = 0. (6.7)

This is the equation we are concerned with most, since its solution theory also
provides insight into the other forms.

6.1.7 Definition: The Maxwell equation (6.7) is complemented with
the following boundary conditions:

• Perfectly conducting:

n× u = 0. (6.8)

• Natural:

n×∇×u = 0. (6.9)

• Impedance:

n×∇×u− α(n× u)× n = 0. (6.10)
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6.1.8 Definition: For u ∈ C1(Ω), we define the trace operators

γτ = n× u|∂Ω,

γT = n× u|∂Ω × n.
(6.11)

The second of these is the tangential component of u on the boundary.
Furthermore, we introduce the space Hcurl

0 as the completion of the space
of differentiable functions with compact support under the norm of Hcurl

Hcurl
0 = C∞00 (Ω;Rd)

Hcurl

. (6.12)

6.1.9 Theorem: The trace operator γτ can be extended to a continuous,
surjective operator

γτ : Hcurl(Ω)→ Y (∂Ω),

where

Y (∂Ω) =
{
u ∈ H−1/2

τ (∂Ω)
∣∣ ν · (∇×u) ∈ H−1/2(∂Ω)

}
,

H−1/2
τ (∂Ω) =

{
u ∈ H−1/2(∂Ω;Rd)

∣∣u · n = 0 a.e.
}
.

(6.13)

Furthermore, the trace operator γT can be extended to a continuous
operator

γT : Hcurl(Ω)→ Y (∂Ω)∗.

6.1.10. The trace theorem indicates, that Hcurl
0 (Ω) is the correct space to solve

the problem with perfectly conducting boundary condition on the whole bound-
ary. It remains now to deal with the divergence constraint. First, we note, that
the divergence operator is not well-defined on Hcurl, and that the subspace of
Hcurl with divergence in L2 is H1, which must be avoided. Therefore, we have
to resort to a dual formulation of this constraint, which leads to the following
weak form of the perfectly conducting Maxwell problem.

6.1.11 Definition: The Maxwell problem for perfectly conducting
boundary conditions in weak form reads: find (u, p) ∈ V × Q, where
V = Hcurl

0 (Ω) and Q = H1
0 (Ω) such that there holds

(∇×u,∇×v) + (v,∇p) =(f, v) ∀v ∈ V
(u,∇q) =0 ∀q ∈ Q.

(6.14)

Remark 6.1.12. At this point, our task is laid out. We have to prove well-
posedness of the Maxwell problem in mixed form, then find suitable finite ele-
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ment spaces and commuting interpolation operators. It turns out that this can
be done in a more general framework, called the de Rham complex.

6.2 The de Rham complex

6.2.1. We can embed finite element methods for the Darcy problem, also for the
Maxwell problem, into a common framework based on the de Rham complex.
If we wanted to do this in its full mathematical beauty, we would have to spend
some time introducing the concept and notation of differential forms. As an
alternative, we can use the concrete vector spaces Hdiv(Ω) and Hcurl(Ω). The
drawback is, that we have to prove several particular cases, where the abstract
theory only knows one common case. Nevertheless, it is worthwhile to begin this
way, such that the reader has an easier task reading the full theory in [AFW06;
AFW10]. As a byproduct, we will prove in generality some of the properties of
polynomial spaces in Chapter 4.

6.2.2. We now know three differential operators, ∇, ∇×, and ∇·with the inter-
esting property

∇×∇ϕ = 0 ∇·∇×E = 0. (6.15)

As a consequence, for ϕ ∈ H1(Ω) we not only have ∇ϕ ∈ L2(Ω;R3), we also
have ∇×∇ϕ = 0 ∈ L2(Ω;R3). This gives rise to the sequence

R ⊂−→ H1(Ω)
∇−→ Hcurl(Ω)

∇×−→ Hdiv(Ω)
∇·−→ L2(Ω) −→ 0, (6.16)

such that the range of an operator is always in the kernel of the operator to its
right.

6.2.3 Notation: The notation of exterior calculus of differential forms
allows us to write this sequence elegantly as

R d−−→ HΛ0(Ω)
d−−→ HΛ1(Ω)

d−−→ HΛ2(Ω)
d−−→ HΛ3(Ω) −−→ 0

∼=
y ∼=

y ∼=
y ∼=

y
R ⊂−−→ H1(Ω)

∇−−→ Hcurl(Ω)
∇×−−→ Hdiv(Ω)

∇·−−→ L2(Ω) −−→ 0,
(6.17)

such that d = dk : HΛk(Ω)→ HΛk+1(Ω) and

d2 = d ◦ d = dk+1 ◦ dk = 0. (6.18)
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Remark 6.2.4. The spacesHΛk(Ω) are Hilbert spaces with values in the spaces
of alternating k-forms on Rd. From linear algebra, we know that all alternating
k-forms are zero if k exceeds the dimension of the vector space. Therefore, the
sequence above is only valid in three dimensions, and it must be shorter by one
member in two dimensions. Changing our view back to differential operators, we
realize that there are two relevant sequences in two dimensions. In the following
diagram, the sequence on top can be used to formulate Maxwell problems in
Hcurl in two dimensions, while the sequence on the bottom relates to the mixed
form of the Laplacian.

We introduce the sequences in two dimensions and afterwards will focus our
arguments on the more general case of three dimensions again. Specialization
to two dimensions are straight forward.

6.2.5 Notation: In two dimensions, we consider the de Rham sequences

R ⊂−−→ H1(Ω)
∇−−→ Hcurl(Ω)

∇×−−→ L2(Ω) −−→ 0

∼=
x ∼=

x ∼=
x

R d−−→ HΛ0(Ω)
d−−→ HΛ1(Ω)

d−−→ HΛ2(Ω) −−→ 0

∼=
y ∼=

y ∼=
y

R ⊂−−→ H1(Ω)
∇×−−→ Hdiv(Ω)

∇·−−→ L2(Ω) −−→ 0,

(6.19)

6.2.6 Notation: The spaces HΛk(Ω) are Hilbert spaces with the inner
product

〈u, v〉HΛk = 〈u, v〉L2 + 〈du, dv〉L2 . (6.20)

The value of this notation lies in the following theorem by de Rham, which
describes the relation between the elements of the sequence. It is cited here
without proof.

6.2.7 Theorem: Assume the domain Ω is Lipschitz. If Ω is simply
connected, the sequences in equations (6.17) and (6.19) are exact, that
is, there holds

ker (dk+1) = im(dk). (6.21)

If it is not simply connected, the codimension of im(dk) in ker (dk+1) is
finite. In particular, in both cases, im(dk) is closed in HΛk+1(Ω).
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So far, we have not considered boundary conditions. The next lemma, which is
again stated without proof, indicates that the properties of the de Rham complex
are inherited, if the appropriate boundary conditions are applied to each space,
namely, function values in H1, tangential traces in Hcurl, and normal traces in
Hdiv. The last restriction from L2 to L2

0 is not a boundary condition, but it is
the compatibility condition implied by the Gauss theorem on Hdiv.

6.2.8 Lemma: The bounded Hilbert cochain complex

0
d−−→ HΛ0

0(Ω)
d−−→ HΛ1

0(Ω)
d−−→ HΛ2

0(Ω)
d−−→ HΛ3

0(Ω) −−→ 0

∼=
y ∼=

y ∼=
y ∼=

y
0 −−→ H1

0 (Ω)
∇−−→ Hcurl

0 (Ω)
∇×−−→ Hdiv

0 (Ω)
∇·−−→ L2

0(Ω) −−→ 0,
(6.22)

has the same properties as stated for the Hilbert complex without bound-
ary conditions.

Remark 6.2.9. The complex does not start with R on the left, but with zero,
since the constant functions are not members of H1

0 (Ω).

On the other hand, we could have replaced the right end of the complex by

L2(Ω)
1
|Ω|

∫
−−−→ R,

where the arror is the mean value operator.

6.2.10 Theorem: The Maxwell problem in Definition 6.1.11 is well
posed.

Proof. We have to show the inf-sup condition and the ellipticity of the curl-curl
bilinear form. Let us introduce

a(u, v) = (∇×u,∇×v), b(v, q) = (v,∇q).

From the fact that the de Rham complex starts with zero, we obtain that the
kernel of the gradient is zero. Thus, for any q ∈ H1

0 (Ω)\{0}, we have v = ∇q 6= 0
and ‖v‖Hcurl = ‖v‖L2 ≤ ‖q‖H1 . Thus, the inf-sup condition holds.

We show now that a(., .) is elliptic on ker (B). From the definition of b(., .), we
deduce that ker (B) ⊥ ∇H1

0 (Ω) = ker (A). Thus, A is an isomorphism between
ker (B) and its dual, and consequently elliptic.

6.2.11 Problem: Prove well-posedness for the Darcy problem using the
de Rham complex for proving Lemma 4.1.20 and Lemma 4.1.22.
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6.3 Polynomial complexes for simplicial meshes

6.3.1. We have already seen that adding xPk to the space Pdk, we obtain a
surjective divergence operator from the Raviart-Thomas element to the pressure
space Pk. In this section, we see that there is a general principle behind this
concept and it can be extended to the curl and gradient operators.

6.3.2 Notation: The homogeneous polynomial spaces P̆k form the
cochain complex

R d−→ P̆rΛ0 d−→ P̆r−1Λ1 d−→ P̆r−2Λ2 d−→ P̆r−3Λ3 d−→ 0

∼=
y ∼=

y ∼=
y ∼=

y
R ⊂−→ P̆r

∇−→ P̆3
r−1

∇×−−→ P̆3
r−2

∇·−→ P̆r−3 −→ 0,

(6.23)

and dk+1 ◦ dk = 0.

Remark 6.3.3. Since the polynomial space Pr is the direct sum

Pr =

r⊕
s=0

P̆s,

the homogeneous polynomial complex above can be extended to a general poly-
nomial complex in a straightforward way.

6.3.1 The Koszul complex

6.3.4 Definition: The homogeneous Koszul complex is a polynomial
complex of the form

0 ←− P̆rΛ0 κ1←− P̆r−1Λ1 κ2←− P̆r−2Λ2 κ3←− P̆r−3Λ3 ←− 0. (6.24)

The Koszul differential is defined such that

κ1ω = x · ω ω ∈ PsΛ1,

κ2ω = −x× ω ω ∈ PsΛ2,

κ3ω = xω ω ∈ PsΛ3,

(6.25)

and there holds

κ ◦ κ = κk+1 ◦ κk = 0. (6.26)
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Note that the “Koszul differential” increases the polynomial order and lowers
the order of the form, thus acts in the opposite way of the usual differential d.

6.3.5 Lemma: For ω ∈ P̆rΛk there holds(
dκ+ κd

)
ω = (r + k)ω. (6.27)

Proof. Since we are not using differential form technology, we prove this for each
k directly. For k = 0, we have κω = 0, thus we have to show

κdω = rω.

Due to linearity of κ and d, it suffices to prove the result for ω = p = xa1x
b
2x
c
3.

We note that dp/dx1
= a/x1p and d(x1p)/dx1

= (a + 1)p and analogue for the
other coordinates.

κ1d0ω = x · ∇p = x ·

a/x1

b/x2

c/x3

 p = (a+ b+ c)p.

The second easy case is k = 3 such that dω = 0. Let again ω = p to obtain

d2κ3ω = ∇·(xp) = ∇·

x1p
x2p
x3p

 = (a+ 1 + b+ 1 + c+ 1)p = (r + 3)ω.

For the two vector valued cases, we note that it suffices to prove the result
for ω = (p, 0, 0)T and to note that the results for nonzero second and third
component follow suite. Thus, for k = 1

∇(x · ω)− x×∇×ω = ∇(x1p)− x×

 0
c/x3

−b/x2

 p

=

 a+ 1
bx1/x2

cx1/x3

 p+

 b+ c
−bx1/x2

cx1/x3

 p =

a+ b+ c+ 1
0
0

 p = (r + 1)ω.

Finally, for k = 2

∇×(−x× ω) + x∇·ω = ∇×

 0
−x3

x2

 p+

x1a/x1

x2a/x1

x3a/x1

 p

=

b+ 1 + c+ 1
−ax2/x1

−ax3/x1

 p+

 a
ax2/x1

ax3/x1

 p =

a+ b+ c+ 2
0
0

 p = (r + 2)ω.
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6.3.6 Lemma: The restriction of operator d to im(κ) is injective and
vice versa, or equivalently for any polynomial form ω ∈ P̆rΛk there holds

dκω = 0 =⇒ κω = 0,

κdω = 0 =⇒ dω = 0.
(6.28)

Proof. If r = k = 0, then κω = dω = 0, such that the lemma holds trivially.
For r + k 6= 0, we apply κ to equation (6.27) to obtain

κω =
1

r + k

(
κdκω + κ2dω

)
=

1

r + k
κdκω.

Thus, we have proven dκω = 0 implies κω = 0. The second implication is
proven by applying d to (6.27).

6.3.7 Theorem: The polynomial de Rham complex and the Koszul
complex are exact for r > 3. Furthermore for r + k > 0, there holds

P̆rΛk = κP̆r−1Λk+1 ⊕ dP̆r+1Λk−1. (6.29)

Proof. We already know im(κk−1) ⊂ ker (κk). Thus, it remains to show the
opposite inclusion. Let therefore ω ∈ P̆rΛk such that κω = 0. Then,

ω =
1

r + k
(dκω + κdω) =

1

r + k
κdω =: κη

with η ∈ P̆r−1Λk+1. Thus, ω ∈ im(κk−1). Again, the proof for the de Rham
complex is obtained by replacing κ by d.

In order to see that P̆rΛk is the sum of the two spaces, we let for arbitrary
ω ∈ P̆rΛk

η =
1

r + k
dω ∈ P̆r−1Λk+1, µ =

1

r + k
κω ∈ P̆k+1Λk−1.

By equation (6.27), we have ω = κη + dµ. It remains to show that the inter-
section of the spaces is zero. Therefore, let ω be chosen from the intersection.
Then, ω = κη = dµ and

(r + k)ω = dκω + κdω = dκ2η + κd2µ = 0.
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6.3.8 Corollary: Theorem 6.3.7 holds as well for the polynomial com-
plexes

0 −→ PrΛ0 d−→ Pr−1Λ1 d−→ Pr−2Λ2 d−→ Pr−3Λ3 −→ 0, (6.30)

and

R ←− PrΛ0 κ←− Pr−1Λ1 κ←− Pr−2Λ2 κ←− Pr−3Λ3 ←− 0. (6.31)

Proof. This is due to the fact that the polynomial spaces Pr are the direct sums
of homogeneous polynomial space P̆s.

6.3.9 Definition: The polynomial space of k-forms P+
r Λk is defined as

P+
r Λk = PrΛk ⊕ κPrΛk+1. (6.32)

It is also referred to as P−r+1Λk. Furthermore,

P+
r Λ0 = Pr+1Λ0, P+

r Λd = PrΛd.

Remark 6.3.10. We have used the construction principle

PrΛk = Pr−1Λk ⊕ P̆rΛk.

Using its decomposition, we obtain

PrΛk =

r−1⊕
s=1

κP̆s−1Λk+1
r−1⊕
s=1

dP̆s+1Λk−1 ⊕ κP̆r−1Λk+1 ⊕ dP̆r+1Λk−1.

If we leave out the last factor, we get the new space P+
r−1Λk.

6.3.11 Lemma: If ω ∈ P+
r Λk and dω = 0, then ω ∈ PrΛk.

Proof. Let ω = ω1+κη with ω1 ∈ PrΛk and η ∈ P̆rΛk+1. Then, dω1 ∈ Pr−1Λk+1

and dκη ∈ P̆rΛk+1. Therefore, dω1 = dκη = 0. By Lemma 6.3.6, κη = 0, such
that ω = ω1.
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6.3.12 Lemma: For r ≥ 1 and 0 ≤ k < d there holds

dP+
r Λk ⊂ dPr+1Λk ⊂ PrΛk+1 ⊂ P+

r Λk+1. (6.33)

The following four mappings d have the same kernel:

d : PrΛk → Pr−1Λk+1 d : P+
r Λk → PrΛk+1

d : PrΛk → P+
r−1Λk+1 d : P+

r Λk → P+
r Λk+1

(6.34)

The following four mappings d have the same range:

d : PrΛk → Pr−1Λk+1 d : P+
r−1Λk → Pr−1Λk+1

d : PrΛk → P+
r−1Λk+1 d : P+

r−1Λk → P+
r−1Λk+1

(6.35)

Proof. The first statement follows from the inclusions of Pr and P+
r . The hori-

zontal equality of the second statement follows from Lemma 6.3.11. The vertical
identities from the decomposition (6.29). For the last set of identities, we ob-
serve that by construction

PrΛk = P+
r−1Λk ⊕ dPr+1Λk−1.

Thus, dPrΛk = dP+
r−1Λk ⊂ Pr−1Λk+1.

6.3.13 Theorem: Let r ≥ 0 and 1 ≤ k ≤ d. Then,

dimκP̆rΛ
k(Rd) = dim dP̆r+1Λk−1(Rd)

=

(
d+ r

d− k

)(
r + k − 1

k − 1

)
.

(6.36)

Proof. First, we prove the equality of the two dimensions by applying κ to
equation (6.29), yielding

κP̆rΛ
k(Rd) = κdP̆r+1Λk−1(Rd).

By Lemma 6.3.6, the two spaces are isomorphic and the equality holds.

The dimension formula is proven first for r = 0 and k ≥ 1. The Koszul operator
is injective on P0ΛK(Rd) since the first factor in equation (6.29) vanishes. It is
also injective on P̆rΛd(Rd) for r ≥ 0.

For all other combinations of r and k it is proven by induction over k. For k = d,

dim P̆rΛd(Rd) = dim P̆r(Rd) =

(
d+ r − 1

d− 1

)
.
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For k < d, we assume the formula proven for k + 1. We have

P̆rΛ
k(Rd) =

(
d+ r − 1

d− 1

)(
d

k

)
.

Now, the dimension formula

dim im(ϕ) = dimV − dim kerϕ,

yields

dimκP̆rΛk(Rd) = dim P̆rΛk(Rd)− dimκP̆r−1Λk+1(Rd),

where we have used the exactness of the Koszul complex. Using the induction
hypothesis yields by the binomial identity

dimκP̆rΛk(Rd) =

(
d+ r − 1

d− 1

)(
d

k

)
−
(
d+ r − 1

d− k − 1

)(
r + k − 1

k

)
=

(d+ r − 1)!d!

(d− 1)!r!k!(d− k)!
− (d+ r − 1)!(r + k − 1)!

(d− k − 1)!(r + k)!k!(r − 1)!

=
(d+ r − 1)!d(r + k)− (d− k)(d+ r − 1)!r

r!k!(d− k)!(r + k)

=
(d+ r − 1)!

(
d(r + k)− (d− k)r

)
r!k!(d− k)!(r + k)

=
(d+ r)!

r!(k − 1)!(d− k)!(r + k)

=

(
d+ r

d− k

)(
r + k − 1

k − 1

)
.

6.3.2 Degrees of freedom and bases for simplicial meshes

6.3.14. After having studied the properties of the de Rham complex and the
Koszul complex of polynomial spaces, we continue like with standard finite
elements and define a basis of shape functions and sets of degrees of freedom
dual to this basis. Note that the following definition subsumes the definitions
of conforming finite elements for H1, Hcurl and Hdiv in a single statement.

6.3.15 Definition: Given a space of polynomial forms PrΛk =
PrΛk(Rd), we define the space of finite element polynomial forms on
a mesh Th covering the domain Ω ⊂ Rd as

PrΛk(T) =
{
ω ∈ HΛk

∣∣ ∀T ∈ T : ω|T ∈ PrΛk
}
. (6.37)
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6.3.16. The degrees of freedom have to be designed such that they guarantee
the necessary continuity between cells. To this end, we have to study the traces
of polynomial forms on the boundaries (called subsimplices below) of the simplex
T . Then, we can start decomposing degrees of freedom and node values such
that they can be allocated to these subsimplices.

Geometric structure of simplices

6.3.17 Definition: Let x0, . . . , xk for k ≤ d be a set of k + 1 points
in Rd. Then, we call the set of convex combinations of these points the
k-simplex f spanned by {x0, . . . , xk}.

6.3.18 Definition: Let T be the simplex in Rd spanned by the points
x0, . . . , xd. Then, every ascending subset σ ⊂ {0, . . . , d} of length k + 1
defines a k-dimensional subsimplex of T denoted as fσ.
The set of all subsimplices of T , including T itself is called ∆(T ). The
set of all k-dimensional subsimplices is ∆k(T ).

Example 6.3.19. A d-dimensional simplex T has
(
d+1
k+1

)
subsimplices of dimen-

sion k.

The one-dimensional simplex [x0, x1] has two subsimplices of dimension zero,
namely the two points x0 and x1.

The triangle spanned by the points x0, x1, x3 has three one-dimensional subsim-
plices (edges) and three zero-dimensional subsimplices (vertices).

The tetrahedron spanned by the points x0, . . . , x3 has

• 4 triangular faces,

• 6 edges,

• 4 vertices.

Geometric decomposition of Pr(T )

Remark 6.3.20. For a simplex T ⊂ Rd, the barycentric coordinates are the
uniquely determined linear interpolating polynomials such that

λi(xj) = δij .
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Then,

T =

{
x =

d∑
i=0

λi

∣∣∣∣λi ≥ 0,

d∑
i=0

λi = 1

}
.

Let f = fσ be the k-dimensional subsimplex spanned by the points xσ0 , . . . , xσk .
Then, the linear polynomials λσ1 , . . . , λσk form a set of barycentric coordinates
for fσ, that is,

fσ =
{
x ∈ T

∣∣λj = 0 for j 6∈ σ
}
.

=

{
x =

∑
i∈σ

λi

∣∣∣∣λi ≥ 0,
∑
i∈σ

λi = 1

}
.

(6.38)

Remark 6.3.21. When we introduced barycentric coordinates in order to de-
fine standard shape functions on simplices, we generated a basis for Pr(Rd) by
selecting polynomials of the λi. Closer inspection reveals that these polynomials
were homogeneous. Therefore, we defined an isomorphism

P̆k(Rd+1) ≡ Pk(Rd), (6.39)

which reads: for every p ∈ Pk(Rd) there is q ∈ P̆k(Rd+1) such that

p(x1, . . . , xd) = q(λ0, . . . , λd).

6.3.22 Definition: For each k-dimensional subsimplex fσ of T with
σ = σ0, . . . , σk, the space Pr(fσ) ≡ P̆r(Rk+1) is defined as

Pr(fσ) =
{
q(λσ0 , . . . , λσk)

∣∣q ∈ P̆r(Rk+1)
}
. (6.40)

The bubble function associated with fσ is

bfσ = λσ0
· · ·λσk . (6.41)

The extension operator Efσ→T is defined as

Efσ→T : Pr(fσ)→ Pr(Rd),
p(λ0, . . . , λd) = q(λσ0

, . . . , λσk),
(6.42)

where q is chosen as in the definition of Pr(fσ).

6.3.23 Lemma: Every function in Pr(f) vanishes on every subsimplex
g which is disjoint from f .
The bubble function bf vanishes on every subsimplex not containing f .
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6.3.24 Problem: Show: Pr(fσ) is isomorphic to Pr(Rk). Prove
Lemma 6.3.23.

6.3.25 Example:

Unisolvent interpolation conditions for Pr(T )

u(f) = 0 dim f = 0

(u, q)f = 0 q ∈ Pr−2(f) dim f = 1

(u, q)f = 0 q ∈ Pr−3(f) dim f = 2

...
...

...

We are now generalizing and formalizing this example in order to derive a geo-
metric decomposition of Pr(T ) and its dual.

6.3.26 Definition: For every f ∈ ∆(T ), we define V (f) ⊂ Pr(T ) for
dim f > 0 as

V (f) =
{
p = Ef→T bfq

∣∣ q ∈ Pr−dim f−1(f)
}
, (6.43)

and for dim f = 0

V (f) =
{
λri
∣∣ f = {xi}

}
. (6.44)

6.3.27 Definition: For every f ∈ ∆(T ), we define W (f) ⊂ Pr(T )∗ for
dim f > 0 as

W (f) =
{
ϕ(p) = (p, q)f

∣∣ q ∈ Pr−dim f−1(f)
}
, (6.45)

and for dim f = 0

W (f) =
{
ϕ(p) = p(xi)

∣∣ f = {xi}
}
. (6.46)
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6.3.28 Lemma: There holds

Pr(T ) =
⊕

f∈∆(T )

V (f), Pr(T )∗ =
⊕

f∈∆(T )

W (f). (6.47)

Proof. We begin to show that

Pr(T ) =
⊕

f∈∆(T )

V (f).

First, we note that for any f ∈ ∆(T ) every function in V (f) is also in Pr(T ).
For dim f = 0, that is, f = {xi} for some vertex xi, the only homogeneous
polynomial of order r is λri .

For dim f > 0 we have by the first statement of Lemma 6.3.23, that the spaces
V (f) where f is a vertex are disjoint. By the second statement of the same
lemma, the spaces V (f) for all f with equal dimension are disjoint. Therefore,
the sum

Vd(T ) =

d−1∑
k=0

∑
f∈∆k(T )

V (f),

is direct. But, V (T )∩Vd(T ) = {0}, since all elements in V (T ) contain a bubble
function factor. Therefore, ⊕

f∈∆(T )

V (f) ⊂ Pr(T ).

We conclude by showing that dimensions on both sides are equal. On the right,
we use

dimPr(Rd) =

(
r + d

r

)
=

(r + d)!

d!r!

On the left, we have

dim
⊕

f∈∆(T )

V (f) =

d∑
k=0

(
d+ 1

k + 1

)(
r + k

k

)

=
(d+ 1)!

r!

d∑
k=0

1

(k + 1)!(d− k)!

(r + k)!

k!
.

It remains to show the decomposition for Pr(T )∗. To this end, we first notice
that for any f ∈ ∆(T ) there holds dimW (f) = dimV (f) by their definition.
Furthermore, for p ∈ V (f) there holds(

ϕ(p) = 0 ∀ϕ ∈W (f)
)
⇒ p = 0.
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Thus, for p ∈ Pr(T ) there holds(
ϕ(p) = 0 ∀ϕ ∈

∑
W (f)

)
⇒ p = 0.

Consequently,

Pr(T )∗ =
∑

W (f).

since we have already proven that

dimPr(T )∗ =
∑

dimW (f),

the sum on the right must be direct.

Results for PrΛk and P+
r Λk and applications

For polynomial differential forms on simplices, we cite the main results without
proof and then discuss their application to Hdiv and Hcurl.

6.3.29 Theorem: Let k, r ≥ 1. Then, P+
r (T ) admits a geometric de-

composition

P+
r Λk(T ) =

⊕
f∈∆(T )

V (f), P+
r Λk(T )∗ =

⊕
f∈∆(T )

W (f), (6.48)

where

V (f) ≡


0 dim f < k

Pr+k−dim fΛdim f−k(f) else
0 dim f > r + k.

(6.49)

W (f) ≡


0 dim f < k

Pr+k−dim fΛdim f−k(f) else
0 dim f > r + k.

(6.50)
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6.3.30 Example:

dim f P+
r Λ0 Pr+1 P+

r Λ1 N1e
r P+

r Λ2 RTr
3 Pr−3Λ3 Pr−3 Pr−2Λ2 BDMr−2 Pr−1Λ1 N2e

r−1

2 Pr−2Λ2 Pr−2 Pr−1Λ1 BDMr−1 PrΛ0 Pr
1 Pr−1Λ1 Pr−1 PrΛ0 Pr −− −−
0 R R −− −− −− −−

(6.51)

Geometric decomposition of P+
r Λk and their spaces of degrees of freedom.

N1e (Hcurl) Nedelec 1st family edge element

RT (Hdiv) Raviart-Thomas (also Nedelec 1st face in 3D)

N2e (Hcurl) Nedelec 2nd family edge element

6.3.31 Theorem: Let k, r ≥ 1. Then, Pr(T ) admits a geometric de-
composition

PrΛk(T ) =
⊕

f∈∆(T )

V (f), (6.52)

where

V (f) ≡


0 dim f < k

P+
r+k−dim f−1Λdim f−k(f) else

0 dim f ≥ r + k.

(6.53)

6.3.32 Example:

dim f PrΛ1 N2e
r PrΛ2 BDMr

3 P+
r−3Λ2 RTr−2 P+

r−1Λ1 N1e
r−1

2 P+
r−2Λ1 RTr−1 P+

r Λ0 Pr
1 P+

r−1Λ0 Pr −− −−

(6.54)

Geometric decomposition of PrΛk and their spaces of degrees of freedom.

N2e (Hcurl) Nedelec 2nd family edge element

BDM (Hdiv) Brezzi-Douglas-Marini (also Nedelec 2nd face in 3D)

N1e (Hcurl) Nedelec 1st family edge element
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6.4 The complex of tensor product polynomials

6.4.1 Lemma: Tensor product polynomials form the exact sequence

R ⊂−→ Qr
∇−→

Qr,r+1,r+1

Qr+1,r,r+1

Qr+1,r+1,r

 ∇×−→

Qr+1,r,r

Qr,r+1,r

Qr,r,r+1

 ∇·−→ Qr −→ 0,

Proof. First, we show that the differential operators map into the right spaces.
Let q ∈ Qr+1 such that q(x) = q1(x1)q2(x2)q3(x3) with qi ∈ Qr+1. Then

∇q =

q′1q2q3

q1q
′
2q3

q1q2q
′
3

 ∈
Qr,r+1,r+1

Qr+1,r,r+1

Qr+1,r+1,r

 .

Similarly, we can compute this directly for ∇× and ∇·. Since polynomials are
differentiable, we have d2 = 0. It remains to show that the sequence is exact,
which we will prove at the example of Hcurl. Let u ∈ ker (∇×),

u =

ϕ1ϕ2ϕ3

ψ1ψ2ψ3

π1π2π3

 , 0 = ∇×u =

π1π
′
2π3 − ψ1ψ2ψ

′
3

ϕ1ϕ2ϕ
′
3 − π′1π2π3

ψ′1ψ2ψ3 − ϕ1ϕ
′
2ϕ3

 ,

where each polynomial with index i only depends on xi. Furthermore, ϕ1, ψ2, π3 ∈
Pr and all other in Pr+1. From the continuous de Rham complex, we know that
there is a function p such that u = ∇p. It remains to show that p ∈ Qr+1.
There holds

∂1p = ϕ1ϕ2ϕ3.

Thus, we make the ansatz

p = Φ1ϕ2ϕ3,

where Φ1 ∈ Pr+1 is the antiderivative of ϕ1. Thus, p ∈ Qr+1 It remains to show
that this ansatz is consistent with the other two derivatives, thus,

p = Φ1ϕ2ϕ3 = ψ1Ψ2ψ3 = π1π2Π3.

Integrating the first component of ∇×u with respect to x2 and x3, we obtain

π1π2Π3 = ψ1Ψ2ψ3.

Doing the same with the second component, we see indeed that the function p
is consistently defined and thus u = ∇p.
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6.4.2 Definition: The one-dimensional de Rham complex on the inter-
val I = [ξ0, ξ1] and its polynomial subcomplex are

R ⊂−−−−→ H1(I) = HΛ0(I)
d
dx−−−−→ L2(I) = HΛ1(I) −−−−→ 0

⊂
x ⊂

x
R ⊂−−−−→ Pr+1 = Pr+1Λ0

d
dx−−−−→ Pr = PrΛ1 −−−−→ 0

(6.55)

The degrees of freedom for Pr+1Λ0 are

N0,0(p) = p(χ0),
N0,1(p) = p(χ1),

N1.q(p) =

∫
I

pq dx, ∀q ∈ Pr−1. (6.56)

The degrees of freedom for PrΛ1 are

N1,q(p) =

∫
I

pq dx, ∀q ∈ Pr. (6.57)

Remark 6.4.3. The degrees of freedom for Pr+1Λ0 are chosen such that the
finite element function on a subdivision of I is continuous, thus ihH1. For PrΛ1,
we do not require continuity and thus only need interior degrees of freedom.

6.4.4 Definition: Let

N0,0p = p(chi0), N0,1p = p(χ1), N1,i =

∫
I

pqi dx, (6.58)

be the degrees of freedom of a one-dimensional element where the qi are
a basis for Pr−1 and Pr in case of Pr+1Λ0 and PrΛ1, respectively. Then,
the tensor product of these degrees of freedom applied to the function
p(x1, x2) = p1(x1)p2(x2) is defined as

N0,i ⊗N0,j(p) = p1(χi)p2(χj),

N0,i ⊗N1,j(p) =

∫
I

p1(χi)p2(x)qj(x) dx,

N1,i ⊗N0,j(p) =

∫
I

p1(x)qj(x)p2(χj) dx,

N1,i ⊗N1,j(p) =

∫∫
I

p1(x1)p2(x2) dx1 dx2.

(6.59)
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6.4.5 Lemma: For the two elements

RTr =

(
Pr+1Λ0 ⊗ PrΛ1

PrΛ1 ⊗ Pr+1Λ0

)
, N1e

r =

(
PrΛ1 ⊗ Pr+1Λ0

Pr+1Λ0 ⊗ PrΛ1

)
, (6.60)

the tensorized degrees of freedom uniquely determine the normal and
tangential components, respectively, on the face of a square.
Both elements with their tensor degrees of freedom are unisolvent.

Proof. The elements are unisolvent by the following argument: Let {ϕi} and
{ψj} be the basis dual to the degrees of freedom of Pr+1Λ0 or PrΛ1, respectively.
Then, (renumbering the degrees of freedom)

Nk ⊗Nl(ϕi ⊗ ψj) = δikδjl.

Thus, the mapping between tensorized degrees of freedom and tensorized basis
functions is one-to-one.

For the Raviart-Thomas element RTr, the normal component is PrΛ1. Take for
instance the face x1 = χ0. Then, the degrees of freedom associated to this face
are

N0,0 ⊗N1, qp =

∫
I

p1(χ1)p2(x2)q(x2) dx2 ∀q ∈ Pr.

Since the trace of p on this face is p2 ∈ Pr, this polynomial is uniquely deter-
mined by the degree of freedom.

The argument for the Nedelec edge elementN1e
r follows by exchanging tangential

and normal component.

Remark 6.4.6. The construction extends to the three-dimensional products.
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anisotropic tensor product, 97
Arnold-Boffi-Falk element, 100
averaging operator, 104

barycentric coordinates, 50
BDM element, 90, 99
broken bilinear form, 54
bubble function, 51, 131
bubble space, 51, 56

canonical interpolation, 92, 95, 112
closed range theorem, 29, 30
contravariant, 96
creeping flow, 14

Darcy’s law, 77
diffusion tensor, 77
Dirichlet boundary condition, 6
displacement, 4
displacement-pressure formulation, 11
divergence-free, 14
dual mixed formulation, 80, 84
dual problem, 114

elliptic regularity, 106, 110
energy norm, 114
essential boundary condition, 78, 79
extension operator, 131

Fick’s law, 77
flux, 76
Fortin operator, 113
Fortin projection, 39, 52, 53, 57, 58,

60, 91, 100
Fourier’s law, 77

Gauss theorem, 77
Green’s formula, 80

homogeneous polynomials, 88
Hooke’s law, 6

incompressible, 14
inf-sup condition, 25
inf-sup stable, 25
interior penalty method, 105, 107

Jacobi determinant, 100
jump operator, 68, 104

ker, 23
kernel, 23
Korn inequality, 8, 45
Koszul complex, 124
Koszul differential, 124

Lagrange functional, 18
Lagrange multiplier, 18, 19
Lamé-Navier parameters, 6
lifting operator, 107
locally quasi-uniform, 53

macro element, 67, 67
Maxwell equations, 119
MINI element, 51, 59

natural boundary condition, 79
node functionals, 86, 90, 92, 97, 99, 100

open mapping theorem, 29
orthogonal complement, 23, 26
orthogonal projection, 28

permeability, 77
Piola transform, 96, 96, 97
Piola transformation, 63
polar space, 26
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pressure stabilization, 55
primal formulation, 79
primal mixed formulation, 78

quasi-optimality, 95

range, 23
Raviart-Thomas element, 86, 97
Rayleigh quotient, 20
reduced integration, 75
reduced problem, 18, 46
reference configuration, 4
residual operator, 108
Reynolds transport theorem, 76
Riesz representation, 28
Riesz representation theorem, 82

Schur complement, 13
shape regularity, 55
singular value decomposition, 22
singular values, 22
singular vectors, 22
solenoidal, 14
stabilized method, 55
Stokes equations, 14, 15, 45
strain tensor, 5
stress tensor, 5
subsimplex, 130
SVD, 22
symmetric gradient, 5

tensor product polynomials, 97
trace operator, 80
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