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Introduction

The Stationary Stokes Equations

Find velocity u and pressure p in a polyhedral domain Q C RY:

—vAu+Vp=fFf in Q
divu=0 in Q
u=20 on 0N
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Introduction

The Stationary Stokes Equations

Find velocity u and pressure p in a polyhedral domain Q C RY:

—vAu+Vp=fFf in Q
divu=0 in Q
u=20 on 0N

Variational formulation

Find (u, p) € (H3(Q))9 x L3(R) such that

V(Vu, VV)/_z(Q) - (p, div V)Lz(Q) = (f, V)L2(Q) YwveV= H&(Q)d
(divu, q)12¢0) =0 Vg e Q = L5(Q)
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Introduction

The Discretized Stokes Equations

@ Tj, regular decomposition of

o V, x Qp C V x Q finite element subspace

Find (uh,ph) € Vh X th

U(Vuh, Vvh)LZ(Q) — (ph,div Vh)LZ(Q) = (f,vh)L2(Q) Yvh € Vy
(divun, gn)2() = 0 Yan € Qn
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Introduction

The Discretized Stokes Equations

@ Tj, regular decomposition of

o V, x Qp C V x Q finite element subspace

Find (uh,ph) € Vh X th

U(Vuh, Vvh)LZ(Q) — (ph,div Vh)LZ(Q) = (f,vh)L2(Q) Yvh € Vy
(divun, gn)2() = 0 Yan € Qn

v

@ Exact mass conservation is fulfilled if divVy C Q.

@ For the Taylor-Hood element just [, divup dx = 0 can be
expected.
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Introduction

The Inf-Sup Condition

The discretized Stokes problem has exactly one solution, if the
spaces V, and Qy, satisfy the inf-sup condition

38 > 0, 8 # B(h) where

di d
inf sup J2.9ndiv v

ah€QnvneVy lIVhllv]ianll@
adh Vh750
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Introduction

The Inf-Sup Condition

The discretized Stokes problem has exactly one solution, if the
spaces V, and Qy, satisfy the inf-sup condition

38 > 0, 8 # B(h) where

di d
inf sup J2.9ndiv v

€,V [|Vhllviignlle
9h vh#0

@ The Taylor-Hood element is inf-sup stable for all k > 1.

@ The same holds, if P— polynomial spaces instead of Q—
spaces are used.
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The New Element Q-DGO

A New Finite Element

We seek after an element pair that
@ is inf-sup stable.
@ gives better mass conservation.

@ is not much more “expensive” than the Taylor-Hood pair.

Daniel Arndt Augmented Taylor-Hood Elements for Incompressible Flow 6



The New Element Q-DGO

A New Finite Element

We seek after an element pair that
@ is inf-sup stable.
@ gives better mass conservation.

@ is not much more “expensive” than the Taylor-Hood pair.

Augment the pressure ansatz space Q,’j of the Taylor-Hood
element by local constant functions

Qf :={q € L§(Q) : g = gk + 0. g € C(Q),
qklk € Qk(K), qolk € Qo(K) VK € Th}.

@ The ansatz space for the velocities remains unchanged.
@ The pressure becomes discontinuous.
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The New Element Q-DGO

Conservation of Mass

Testing with an elementwise constant function yields

(div up, qh)LZ(Q) VYag, € Qp = / divu,dx =0 J
K

and the element pair is locally divergence free.

Nevertheless, the solution is in general not pointwise solenoidal:

divVy Z Qp
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The New Element Q-DGO
Stability

Theorem (A. 2013)

Let Th be a regular decomposition of 2. Then the pair

Vi ={veH(Q: vk € Qus1(K)? VK € Th}
Qn=1{q € L§(Q): g=qk + g0, gk € C(Q),
gklk € Qk(K), qolk € Qo(K) VK € Tp}

ford =2,3, k > 1 is inf-sup stable.

For the case with polynomial P see [BCGG12].
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The New Element Q-DGO

Macroelements

Definition (Macroelement spaces)
Vom = {vE HF(M)? :v=w|y,we Vy}
Qm ={aqlm.q € Qn}

Definition (Spurious pressure modes)

NMZ{qEQM:/ gdivvdx =0 VVGVO’M}
M
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The New Element Q-DGO

Macroelements

Theorem (Inf-sup condition for macroelements, [BBF08])

Let M}, be a macroelement decomposition of T, such that

(H1) Ny are the constant functions for all M € My,

(H2) each M € My, is part of an equivalence class;

(H3) there are finitely many equivalence classes, the number does
not depend on h;

(H4) each element is part of finitely many macroelements, the
number does not depend on h;

(H5) the inf-sup conditions between V), and the space of
elementwise constant functions holds.

Then the spaces V), and Qp satisfy the inf-sup condition.
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The New Element Q-DGO

Macroelements

Theorem (Inf-sup condition for macroelements, [BBF08])

Let M}, be a macroelement decomposition of T, such that
(H1) Ny are the constant functions for all M € My,

(H5) the inf-sup conditions between V), and the space of
elementwise constant functions holds.

Then the spaces V), and Qp satisfy the inf-sup condition.
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The New Element Q-DGO

Proof of the inf-sup stability.

Choose the macroelement partition by grouping together for each
internal vertex the touching elements.

@ (H2) and (H4) hold due to the choice of macroelements.
@ (H3) is a consequence of the regularity assumption.
@ Quy1/Py is inf-sup stable = (H5).
In order to prove (H1) show:
e peNy=VpK=0 VK e M
e Vp=0e M
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The New Element Q-DGO

Convergence

Theorem ([GR86])

If the spaces Iy, and @, satisfy the inf-sup condition, the discrete
Stokes problem is well-defined and for the approximation error
holds

[u—=unlv+lp—rpnllq <C inf (Jlu—vnlv+Ip—anle)
VhEVHL
qhEQp

where the constant C is independent of h.
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The New Element Q-DGO

Convergence

Theorem ([GR86])

If the continuous solution satistfies the regularity assumption
u € [H2(Q) N H(Q)]7,  pe HHHQ)N LE(Q),
then the convergence result

lu—unllv + P = prlle < A (lulljerz(@ye + 1Pl rri(0))

holds for the discrete solution (un, py) of the discrete Stokes
problem. If Q is convex, we get

lu = unllj2@e < R 2 (lull ez + 1ol e(a))-
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Numerical Results

Reference Solution

As reference solution with discontinuous pressure we are using
u= (8}/77/}27 —0x1z), Yz = X2(X - 1)2)/2()/ - 1)27

)y = y)exp(x — 1/2)2 +1/2 x <1/2,
P=0 = y)exp(x — 1/2)2 —1/2 x>1/2°
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Numerical Results

Reference Solution

We choose the right hand side f such that the reference solution
solves the Stokes problem.

f=—vAu+ Vp.

In order to take the discontinuity of the pressure into account we
use the consistently modified right hand side

(f,v>_/Qf-vdx+ > ;/8K|[p]]-vdx.

KeTy
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Numerical Results

Mass Conservation for the Q,/(Q; + Qp) Pair

Divergence
0.01793

0.01

-0.01

-0.01792
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Numerical Results

Convergence

Table: Convergence results for the Q,/(Q1 + Qq) element
Tl [ v unlli [ — Io—pilc
41.267-1073] - - -
16 | 1.714-10~% [ 2.89 | 4.500-10"3 ] 1.99 | 5.231-103 | 2.00
64 | 2.151-107° [ 299 [ 1.118-1073 [ 2.01 | 1.304-10"3 | 2.00
256 | 2.687-107% [ 3.00 | 2.787-10~% | 2.00 | 3.258-10~* | 2.00
1024 | 3.357-10~7 | 3.00 | 6.962-10~> | 2.00 | 8.146-10~> | 2.00
4096 | 4.204-107% [ 3.00 | 1.740-10"° | 2.00 | 2.037-10~> | 2.00
16384 | 6.026-10~° | 2.80 | 4.352-107% | 2.00 | 5.101-10~° | 2.00

Table: Convergence results for the Q,/Q; element

16384 | 2.928-107° | 1.50 | 1.678-10"2 | 0.50 | 3.358-10~2 | 0.50
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Numerical Results
Convergence

Table: Convergence results for the Q3/(Q2 + Qq) element

| 7h |u—un2 lu —uh|p P — palls2
411002-107%] - [1968-1073| - |[3.744-107%]| -
16 | 6.154-107% | 4.03 [ 2.351-10"% [ 3.07 | 3.963-10~° | 3.24
64 | 3.815-10"7 | 4.01 | 2.898-107° | 3.02 | 5.187-107° | 2.93
256 | 2.378-10728 [ 4.00 | 3.609-10° [ 3.01 | 6.610-10" | 2.97
1024 | 1.486-1079 | 4.00 | 4506107 | 3.00 | 8.372-10°8 | 2.98

Daniel Arndt Augmented Taylor-Hood Elements for Incompressible Flow 18



Navier-Stokes

Instationary, Incompressible Navier-Stokes Equations

Unfiltered Navier-Stokes Equations

Find velocity u and pressure p in a polyhedral domain Q c RY:

?;+(UV)U—VAU+Vp—f inQX(O,T),
divu=0 in Qx(0,T),
u:o on aQX(O, T),

u(-,0) = ug in Q.

= additional nonlinearity and time derivative
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Navier-Stokes

Instationary, incompressible Navier-Stokes Equations

LES Navier-Stokes equations

% +(@-V)a+ Vp = f+div(2(v + ve)S(u)) in Qx (0, T),
divii =0 in Q x (0, T),
u=0 on 0Q x (0, T),
u(-,0) =up in Q.

with the symmetric strain-rate tensor

1 (0m; O
%5 = 2 <8x,- - 8Xj>

and the turbulence model ve.
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Navier-Stokes
[1e)

Implementation

The assembled equations can be written in a matrix form as

A BT u\ _(F
B 0 p) \0/°
A : Diffusion, Advection, Reaction

BT : Gradient B : Divergence

A BT p-1 u\ _(F
B 0 p) \O
Use (F)GMRES with precondition matrix P that approximates
A BT
P=(5 %)
where S = —BA71BT is the Schur complement.
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Navier-Stokes
oce

Approximation to S~ !

In cases where reaction is dominant S~1 can be approximated by

St=(-BA BTy 1x A"t

@ Poisson problem with homogeneous Neumann boundary
conditions

@ discontinuous pressure ansatz space

= Symmetric Interior Penalty Galerkin Method
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Navier-Stokes
.

SIPG - Symmetric Interior Penalty Galerkin Method

For the Poisson problem with homogeneous Neumann boundary
conditions we get

/vu-dex+/ ald]- V] - gVl - [V] - [d] - {9V o
Q Iz

:/f~vdx.
Q

Jump operator
[al =g n" +q n"
averaging operator

fa} = %(Cﬁ +q7)
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Turbulent Channel Flow

Turbulent Channel Flow

Turbulent Channel Flow

@ Flow between two infinitely extended plates
(x stream line, y anisotropic height, z width)

OQ:2WX2X%T{'

e Random distortion of initial velocity (Reichelt's Law)

3(v
o f = (07070)1 Re’r = 180' Ve(v) ~ %

u
0778566
0.07
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Turbulent Channel Flow

Characteristic Values

Characteristic Values

@ mean value (u) averaged in time and space

@ Reynolds decomposition u=(uy+u

o viscous length y* = p 2 |y 0y
P

o ur=\/v 5§5>|y=0

o (u)t =12

Reference data from [MKM99]
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Turbulent Channel Flow
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Turbulent Channel Flow

x10°°

—Q,/Q,+Q)

—Q,)Q,
P i
oL i

<V>*
o

_4-

Daniel Arndt Augmented Hood Elements for Incompressible Flow 2




Turbulent Channel Flow
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Summary

Summary

Results

@ The Q-DGO element is inf-sup stable for tensor product
polynomials,

@ The same convergence results as for the Taylor-Hood element,

@ Improved approximation to the mean profile of a turbulent
channel flow by local mass conservation.

Challenge

@ Choice of the preconditioner in the inner solver of the
Navier-Stokes problem
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Thank you for your attention!
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