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Preface

This text is part of a set of notes I prepare for students and my own reference. They
mainly serve the purpose of being short and concise introductions to mathematical
topics. They are provided as is and in the hope that they are useful. Nevertheless,
I am always thankful for possible corrections and suggestions for enhancements.

The material in these notes is not my original research. Most of it is adapted
from textbooks and research publications. While I am striving to give credit to the
original authors wherever possible, I will be delighted to include more citations,
also in order to improve the value of these notes as a reference.

Finally, if you find these notes useful for your own research and decide to cite
results from them, I would be most flattered if you decided to cite them as

Guido Kanschat. Notes on Applied Mathematics. Universität Heidel-
berg. 0000.

Note: yellow boxes indicate text which is missing in the current version and will
be added soon.
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Chapter 1

Preliminaries

Notation 1.1. Very often in these notes, we will abbreviate the term “there is a
positive constant C independent of certain parameters, such that x ≤ Cy” by the
expression

x . y. (1.1) eq:main:1

Furthermore, if additionally for C ≥ 1, there holds y ≤ Cx , then we write

x ' y.

Sometimes, it may be useful to be able refer to the implicit constant in such
equations, which will be done in the form C1.1.
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Chapter 2

From finite to countable
dimensions

Introduction 2.1. Linear algebra deals with abstract vector spaces, but most results
on linear mappings are restricted to finite dimensional spaces, since they exploit
the fact that we can choose a basis.

The choice of a basis becomes a more involved endeavor if we allow for spaces
that do not have a finite basis. We can actually go by two very different routes.
The route of Hamel bases, which are bases of inifintely many vectors, but in order
to represent a vector in such a basis, we only allow for finite linear combinations.

The other route defines a Schauder basis as a set of vectors, such that every vector
in the space is the linear combination of infinitely many basis vectors. In order to
define such a linear combination, we have to define the meaning of such an infinite
sum, namely the convergence of the sum. In the course of such a definition, we
will learn about a natural extension of Euclidean1 spaces, namely pre-Hilbert and
Hilbert spaces.

2.1 Hilbert spaces and orthogonal bases

Definition 2.2. Let V be a vector space over K with K = C or K = R. An inner
product on V is a mapping 〈., .〉 : V × V → K with the properties

〈αx + y, z〉 = α 〈x, z〉+ 〈y, z〉 ∀x, y, z ∈ V ;α ∈ K (2.1)
〈x, y〉 = 〈y, x〉 ∀x, y ∈ V (2.2)
〈x, x〉 ≥ 0 ∀x ∈ V and 〈x, x〉 = 0⇔ x = 0, (2.3)

1And we will not have to distinguish between Euclidean real spaces and unitary complex spaces
anymore.
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usually referred to as (bi-)linearity, symmetry, and definiteness. We note that
linearity in the second argument follows immediately by symmetry.

Definition 2.3. A vector space V equipped with an inner product 〈., .〉 and a norm
defined by

v =
√
〈v, v〉

is called an inner product space or pre-Hilbert space. A Hilbert space is a
pre-Hilbert space which is also complete, that is, every Cauchy sequence with
elements in the space has a limit in the space.

Example 2.4. For any positive integer, the space Rn equipped with the Euclidean
inner product

〈x, y〉 =
n∑

i=1
xiyi

is a Hilbert space. The same holds for Cn and

〈x, y〉 =
n∑

i=1
xiyi.

Example 2.5. The spaces `2(R) and `2(C) of sequences {xk}k=1,... of real and
complex numbers, respectively, are Hilbert spaces, if equipped with the inner
product

〈x, y〉 =
∞∑

i=k
xkyk = lim

n→∞

n∑

k=1
xkyk .

An example for a sequence in `2(R) is for instance the sequence v = {1/k}, since

∥v∥2 =
∞∑

i=k

1
k2 <∞.

The sequence w = {1} is not, since it does not converge quadratically.

Example 2.6. On the space of continuous functions on the interval [−π/2, π/2]
define the inner product

〈f , g〉 =
∫ π/2

−π/2
f (x)g(x)dx.

Let

V =
{
f ∈ C [−π/2, π/2]

∣∣ 〈f , f〉 <∞
}
.
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Then V is a vector space with an inner product and thus a pre-Hilbert space, but
it is not a Hilbert space, since for any n the sum

fn(x) = 4
π

n∑

k=1

sin
(
(2k − 1)x

)

2k − 1

is continuous, but

lim
n→∞

fn =






−1 x < 0
0 x = 0
1 x > 0

is not.

Definition 2.7. Let V be a vector space over a field K. A basis of V is a set {xi}
of linearly independent vectors with coefficients i ∈ I from an index set I , such
that each v ∈ V has a representation of the form

v =
∑

i∈I
αixi,

with coefficients αi ∈ K. For a Hamel basis, it is required that only finitely many
coefficients in this representation are nonzero. For a Schauder basis, we assume
I = N and require that the sum in the linear combination exists as the limit of a
series.

Notation 2.8. We will use the term sequence to denote an at most countable set.
The elements of a sequence are numbered by indices and the index set is N or a
subset thereof.

Definition 2.9. Let V be an inner product space over a field K. Two vectors
x, y ∈ V are called orthogonal if 〈x, y〉 = 0. We write x ⊥ y. Let W be a
subspace of V . Then, a vector v is orthogonal to W , if it is orthogonal to every
vector in W . By w⊥ we denote the set of all vectors in V which are orthogonal
to W .

A set of nonzero mutually orthogonal vectors {xi} ⊂ V is called orthogonal set. If
additionally xi = 1 for all vectors, it is called an orthonormal set. These notions
transfer directly from finite to countable sets.

Theorem 2.10. Let W be a closed subspace of a Hilbert space V . Then, W⊥ is
a closed subspace as well and every vector v ∈ V has a unique decomposition

v = w + u, w ∈ W,u ∈ W⊥. (2.4) eq:lafa:1
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Proof. See for instance [Yos80, p. 82]

Lemma 2.11 (Gram–Schmidt). For every linearly independent sequence of vectors
{vi} there is an up to scaling unique orthogonal set {xi} with the property that

∀n ∈ N : span
i=1,...,n

{xi} = span
i=1,...,n

{vi}.

Proof.

Definition 2.12. A subset M of a Hilbert space V is called dense, if every vector
in V is an accumulation point of M , that is, V is the closure of M . A Hilbert space
is called separable, if it has a countable dense subset.
Note 2.13. From the point of view of numerical analysis and computation, spaces
which are not separable are of limited interest. In fact, every result of a numerical
calculation is in a finite set. When we look at convergence for n→∞ or h→ 0,
we are usually studying sequences with countable index sets. Therefore, vectors
in nonseparable spaces cannot be approximaetd reliably.
Theorem 2.14. Every separable Hilbert space has an at most countable orthonor-
mal basis.

Proof. See e.g. [Yos80]. The proof is constructive and uses the Gram–Schmidt
procedure. First, let M be a countable dense subset of V , which exists due to
the separability assumption. Now choose any numbering of M and v1 the first
nonzero element in M . For i = 2, . . . ,∞ choose with v1, . . . , vi−1 given vi as
the next vector in M which is not in the subspace spanned by v1, . . . , vi−1. This
procedure generates an at most countable sequence {vi} of linearly independent
vectors. It will only stop, if V is finite dimensional, and we have that every element
in M can be written as a finite linear combination of vectors vi.
The sequence {vi} is a Schauder basis for V . In fact, given a vector v ∈ V we
have to show that for every ε, there is a finite linear combination sn =

∑n
i=1 αivi

such that v − sn < ε. Let by separability wε in M be such that v − wε < ε and
choose sn = wε .
Finally, by the Gram–Schmidt procedure, we can construct an orthonormal set
{xi} from the linearly independent set {vi}.

Example 2.15. In the Hilbert spaces Rn, Cn, `2(R), and `2(C), an orthonormal
basis is obtained by choosing basis vectors xi with entries xi,j = δij .
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2.2 Linear operators

Introduction 2.16. Linear mappings are the next central topic of linear algebra,
which we want to extend to infinite dimensional spaces. Here, the basic definition
remains the same, that is, a linear operator is a mapping of a Hilbert space V to
a Hilbert space W which is compatible with vector operations. But Hilbert spaces
have additional structure by their norms and their completeness.

Operators are well defined on a basis

Example 2.17. Let φ : `2(R)→ `2(R) be such that

v =





x1
x2
...
xk
...




7→ φ(v ) =





x1
2x2
...
kxk
...




.

Clearly, φ is linear. But if we consider the sequence of vectors vn = {δnk}, we see
that vn 7→ nvn and thus, while the sequence is bounded in `2(R), its image is not.

Moreover, take now the sequence of vectors

vn =
n∑

k=1

1
k 7→ φ(vn) =

n∑

k=1
1.

The sequence vn converges to a limit v ∈ `2(R), while the sequence φ(vn) diverges.
While φ(vn) is defined for all vn, it is not for the limit v .

Definition 2.18. A linear operator φ : V → W is bounded, if there is a constant
C > 0 such that

∀v ∈ V :
∥∥φ(v )

∥∥
W ≤ C

∥∥v
∥∥
V .

Remark 2.19. By virtue of completeness of the space, whenever a linear operator
is not bounded, it must be undefined for some vectors. We could exclude such
operators from our considerations, but we would severely limit the theory we want
to develop. Instead, we will accept the fact, that we have to extend the notion of
a linear mapping φ : V → W to a linear operator φ : V → W , which may not be
defined on all of V . The following definition fixes this problem somewhat.

Definition 2.20. Let φ : V → W be a linear operator. Then, the domain of φ is

D (φ) =
{
v ∈ V

∣∣φ(v ) ∈ W
}
.

Here, φ(v ) ∈ W implies that φ(v ) is also well defined.
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Chapter 3

Iterative methods in finite and
infinite dimensional spaces

Remark 3.1. This part of the notes deals with preconditioning of symmetric op-
erators, or those, which have a dominating symmetric part. The theory of pre-
conditioning methods for nonsymmetric and in particular non-normal operators is
currently not well developed and thus will not be covered by these notes.

Notation 3.2. Iterative methods will be considered in a Hilbert space X with inner
product 〈., .〉.

Remark 3.3. For purposes of analysis we typically choose the space X = L2(Ω).
We admit a small inaccuracy here: when we run the algorithms on a computer,
we usually employ the Eiclidean inner product, thus X should be the space of
degrees of freedom. But this is a discrete space, where we cannot use theory
of function spaces easily. Instead, we note that the L2-inner product of standard
finite element bases yield inner products equivalent to the Euclidean up to the
local mesh size (see Lemma 3.13).

Example 3.4. While the methods developed in this chapter are fairly general, we
introduce a specific model problem as a simple benchmark case. To this end, we
consider the Dirichlet problem: find u ∈ V = H1

0 (Ω) such that

a(u, v ) ≡
∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx ≡ f (v ), ∀v ∈ V . (3.1) eq:itintro:1

The finite dimensional linear systems of equations are derived from finite element
discretizations on quasi-uniform meshes of cells with maximal diameter h, yielding
a sequence of spaces Vh, on which linear systems are introduced by the same weak
form (3.1).
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Notation 3.5. With a bilinear form a(., .) on X × X we associate the operator
A : X → X by

〈Au, v〉 = a(u, v ), ∀v ∈ V , (3.2) eq:itintro:2

where now V = D (A) is the domain of A, that is, the subset of functions v ∈ X ,
such that Av is defined and in X .

We will tacitly assume that operators A, B, etc. are defined by equation (3.2) and
the bilinear forms a(., .), b(., .), etc., respectively, if they are not defined otherwise.
Definition 3.6. We call the bilinear form a(., .) and its associated operator A
symmetric, if there holds

a(u, v ) = a(v, u) ∀u, v ∈ V .

They are called V -elliptic, if for there is a positive number γ such that

a(u, u) ≥ γ ∥u∥2
V ∀u ∈ V .

Definition 3.7. For positive definite symmetric operators, we obtain the possibly
infinite bounds of the spectrum

Λ(A) = sup
u∈V

a(u, u)
∥u∥2

X
, λ(A) = inf

u∈V

a(u, u)
∥u∥2

X
, (3.3) eq:richardson:8

as well as the possibly infinite spectral condition number

κ(A) = Λ(A)
λ(A) .

Note 3.8. Note that the spectral condition number depends on the norm of the
space X . It is bounded, if and only if A is bounded with respect to this norm.
Example 3.9. Let X = H1

0 (Ω) with the inner product

〈u, v〉1 =
∫

Ω
∇u · ∇v dx.

If A is the operator associated with the bilinear form a(., .) in (3.1), then

Λ(A) = λ(A) = κ(A) = 1.

If on the other hand X = L2(Ω) equipped with the usual L2-inner product, then A
is unbounded and thus κ(A) =∞. λ(A) is the constant in Friedrichs’ inequality.
Notation 3.10. After choosing a basis for a finite dimensional space Xn or a
Schauder basis for the space X (assuming X separable), say {φi}, we can define
a (possibly infinite-dimensional) matrix A associated with the bilinear form a(., .)
with the entries

aij = a(φj , φi).

If we restrict the bilinear forms to a finite dimensional subspace Xn, we denote the
matrices A restricted to this subspace by An.

9



Definition 3.11. The two extremal eigenvalues of the matrix An can be obtained
by the maximum and minimum of the Rayleigh quotient

Λ(A) = max
x∈Rn

xTAx

xT x
, λ(A) = min

x∈Rn

xTAx

xT x
. (3.4) eq:itintro:3

The spectral condition number is

κn(A) = Λ(A)
λ(A) .

Note 3.12. The spectral condition number of the operator A depends on the bi-
linear form a(., .) and the choice of the norm in X . On the other hand, the spectral
condition number of the matrix A depends on the choice of a basis of the space
Xn.

lemma:itintro:1 Lemma 3.13. Let {φi} be the standard, piecewise linear, finite element basis on
a quasi-uniform triangulation of mesh size h. Let M, the so called mass matrix
be the matrix associated with the L2-inner product with entries

mij =
∫

Ω
φi(x)φj (x) dx.

Then,

Λ(M) ' hd ' λ(M)

Therefore, the condition number is

κ(M) = O(hd)
O(hd) = O(1).

Proof. It is easy to verify, that mii > 0, and that not more entries in each row as
edges of the triangulation meet in one vertex are different from zero. Furthermore,
that the size of those entries is of order hd, where d is the space dimension. From
these two facts we immediately obtain

Λ(M) = O(hd).

The argument for λ(M) is more subtle. For any mesh cell T , let xT be the entries
of the vector x which belong to node values of the cell T . Let MT be the cell mass
matrix obtained by restricting the L2-inner product to T . Then,

xTMx =
∑

T∈Th

xTTMT xT ≥ min
T∈Th

xTTMT xT

xTT xT

∑

T∈Th

|xT |2 ≥ λ(MT )|x|2.

In order to estimate the eigenvalues of MT , we note that for a unisolvent element,
the norms |xT | and u0,T are equivalent on the reference cell, and the L2-norm scales
with hd when transforming to the real cell T . Thus, we have λ(M) = O(hd).
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Note 3.14. A closer inspection of the proof yields, that on a shape regular trian-
gulation with cell radii ranging between the minimum h and the maximum H , we
have

Λ(M) = O(Hd)
λ(M) = O(hd)

κ(M) = O
((

H
h

)d)

This can be fixed by using weighted norms in Rn.

3.1 The Richardson iteration

Introduction 3.15. As a first example and prototype for all other iterative methods
we consider Richardson’s method, which for matrices and vectors in Rn reads

x(k+1) = x(k) − ωk
(
Ax(k) − b

)
. (3.5) eq:richardson:1

ωk is a relaxation parameter, which can be chosen a priori or can be changed in
every step. We will for simplicity assume ωk = ω.

lemma:richardson:1 Lemma 3.16. The error after one step of the Richardson method is given by

x(k+1) − x = E
(
x(k) − x

)
, (3.6) eq:richardson:14

where the error propagation operator is

E = I− ωA. (3.7) eq:richardson:15

Proof. Using the fact that x = A−1b, we write

x(k+1) − x = x(k) − ω
(
Ax(k) − b

)
− x(k) = x(k) − x− ωA

(
x(k) − x

)
.

theorem:richardson:1 Theorem 3.17. If A is symmetric, positive definite, with extremal eigenvalues λ >
0 and Λ > 0, then Richardson’s method converges if and only if 0 < ω < 2/Λ. The
optimal relaxation parameter is

ωopt = 2
λ+ Λ , (3.8) eq:richardson:2

which yields an optimal contraction rate of

ρopt = 1− 2λ
λ+ Λ = Λ − λ

Λ + λ = κ − 1
κ + 1 = 1− 2

κ +O
(
κ−2) , (3.9) eq:richardson:4

where κ = Λ/λ is the so called spectral condition number.
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Proof. Convergence of this method is analyzed through the Banach fixed-point
theorem, which requires contraction property of the matrix M = I−ωA. Alterna-
tively, we studied a theorem that states, that a matrix iteration converges if and
only if the spectral radius

ρ(M) = max |λ(M)| < 1,

the maximum absolute value of the eigenvalues of M is strictly less than one.

If A is symmetric, positive definite, with eigenvalues λi > 0, we have that

ρ(M) = max
i
|1− ωλi| . (3.10) eq:richardson:13

Let the extremal eigenvalues be determined by the minimum and maximum of the
Rayleigh quotient,

λ = min
x∈Rn

xTAx

xT x
, and Λ = max

x∈Rn

xTAx

xT x
. (3.11) eq:richardson:3

Then, equation (3.10) yields that the method converges for 0 < ω < 2/Λ. Further-
more, for 1/Λ ≤ ω ≤ 2/Λ we have

ρ(M) = max
{
−1 + ωΛ, 1− ωλ

}
.

The optimal parameter ω is the one where both values are equal and thus (3.8)
and (3.9) hold.

Introduction 3.18. The analysis of finite element methods shows that it is bene-
ficial to give up the focus on finite dimensional spaces and rather use theory that
applies to separable Hilbert spaces. If results can obtained in this context, they
can easily be restricted to finite dimensional subspaces and thus become uniform
with respect to the mesh parameter. Thus, we will first reformulate Richardson’s
method for this case and then derive convergence estimates.

Introduction 3.19. Elements of an abstract Hilbert space X will be denoted by
u, v, w , etc. On the other hand, coefficient vectors in Rn are denoted by letters
x, y, z, etc.

Definition 3.20. Let X be a Hilbert space with inner product 〈., .〉. Let a(., .) be a
second bilinear form on X and the domain of its operator is V . Then, for any right
hand side f ∈ V and any start vector u(0) ∈ V , Richardson’s method is defined
by the iteration

〈
u(k+1), v

〉
=
〈
u(k), v

〉
− ωk

(
a(u(k), v )− 〈f , v〉

)
, ∀v ∈ X. (3.12) eq:richardson:5

ωk is a suitable relaxation parameter, chosen such that the method converges.

Note 3.21. The scalar products in (3.12) become necessary, since different from
the case in Rn, the result of applying the bilinear form a(., .) to u(k) in the first
argument yields a linear form on X . In order to convert this to a vector in X , we
have to apply the isomorphism induced by the Riesz representation theorem.
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theorem:richardson:2 Theorem 3.22. Let the bilinear form a(., .) be bounded and elliptic on X × X ,
namely, let there exist positive constants Λ and λ such that for all u, v ∈ X there
holds

a(u, v ) ≤ Λ ∥u∥ ∥v∥ , a(u, u) ≥ λ ∥u∥2 . (3.13) eq:richardson:6

Then, Richardson’s iteration converges for ωk = ω for any ω ∈ (0, 2λ/Λ2).

Proof. We define the iteration operator T as the solution operator of equation (3.12),
namely Tu(k) := u(k+1). We have to prove that T is a contraction on X under the
assumptions of the theorem.

For two arbitrary vectors u1, u2 ∈ X , let w = u1 − u2 be their difference. Due to
linearity, we have Tw = Tu1 − Tu2 and

〈Tw, v〉 = 〈w, v〉 − ωa(w, v ) = 〈w − ωAw, v〉 .

Using v = Tw as a test function, we obtain
∥∥Tw

∥∥2 = 〈w − ωAw,w − ωAw〉

= ∥w∥2 − 2ωa(w,w) + ω2 ∥∥Aw
∥∥2

≤ ∥w∥2 − 2λω ∥w∥2 + Λ2ω2 ∥w∥2

=
(
1− 2λω + Λ2ω2)
︸ ︷︷ ︸

=:ρ(ω)

∥w∥2 .

The function ρ(ω) is a parabola open to the top, which at zero equals one and has
a negative derivative. Thus, it is less than one for small positive valuers of ω. The
other point where ρ(ω) = 1 is ω = 2λ/Λ2.

Note 3.23. The condition on ω in Theorem 3.22 is more restrictive than in Theo-
rem 3.17, since λ/Λ ≤ 1. This is due to the fact, that in Theorem 3.17 we assume
symmetry, and thus orthogonal diagonalizability of the matrix A. With similar
assumptions, Theorem 3.22 could be made sharper.

Note 3.24. It is clear that the boundedness and ellipticity estimates (3.13) hold for
any finite dimensional subspace Xn ⊂ X , and thus the convergence estimate (3.9)
becomes independent of n.

More interesting and also more common is the case where the bilinear form a(., .)
is unbounded on X . While it is still bounded on each finite subspace Xn, this
bound cannot be independent of n if the sequence {Xn} approximates X .

Note 3.25. We define an operator B : X → X ∗ such that Bu = b(u, .) := 〈u, .〉.
By the Riesz representation theorem, there is a continuous inverse operator B−1 :
X ∗ → X , which is often called Riesz isomorphism.
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definition:richardson:2 Definition 3.26. When we apply Richardson’s method as in (3.12) on a computer,
each step involves a multiplication with the matrix A, but an inversion of the matrix
B, corresponding to the iteration

Bx(k+1) = Bx(k) − ωk
(
Ax(k) − b

)
,

or equivalently,

x(k+1) = x(k) − ωkB−1(Ax(k) − b
)
. (3.14) eq:richardson:7

The iteration in (3.14) is commonly referred to as preconditioned Richardson
iteration and B−1 as the preconditioner. Note that by introducing the iteration
in its weak form (3.12), the preconditioner arrives naturally and with necessity.

The goal of this chapter is finding preconditioners B−1, or equivalently inner
products 〈., .〉, such that the bilinear form a(., .) is bounded and the condition
number κ = Λ/λ is small.

In order to reduce (or increase) confusion, we will refer to the inner product that
we search in order to bound the condition number as b(., .) instead of 〈., .〉, this
way separating the Hilbert space X more clearly from the task of preconditioning.
Thus, the operator B and the matrix B will be associated with a bilinear form
b(., .) and the final version of the preconditioned Richardson iteration is

b(u(k+1), v ) = b(u(k), v )− ωk
(
a(u(k), v )− f (v )

)
, ∀v ∈ X, (3.15) eq:richardson:10

or in operator form

u(k+1) = u(k) − ωkB−1(Au(k) − f ). (3.16) eq:richardson:11

Remark 3.27. The space X and is inner product does not appear anymore in
this formulation, since the bilinear form b(., .) has replaced it. Thus, finding a
preconditioner also amounds to changing the space in which we iterate. This is
reflected by the following:

Corollary 3.28. Let the symmetric bilinear forms a(., .) and b(., .) in the Richardson
iteration (3.15) be both bounded and positive definite on the same space V and
fulfill the spectral equivalence relation

λb(u, u) ≤ a(u, u) ≤ Λb(u, u), ∀u ∈ V . (3.17) eq:richardson:12

Then, if ωk ≡ ω ∈ (0, 2Λ), the iteration is a contraction on V . The optimal
contraction number is ρ according to equation (3.9) for ω chosen as in (3.8).

Proof. This corollary is equivalent to Theorem 3.22 if the inner product 〈., .〉 is
replaced by the bilinear form b(., .).

Remark 3.29. Originally, the space V was chosen as the domain of A which
essentially meant V ⊂ H2(Ω), since we required Av ∈ X . An additional benefit of
the preconditioned version is, that now V ⊂ H1(Ω) is sufficient and at least here
no regularity assumption is required.
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Notation 3.30. In order to distinguish different preconditioners, we will also us the
notation λ(B, A) and Λ(B, A) to refer to the constants in the norm equivalence (3.17).

Example 3.31. Let us take the example (3.1). By the Poincaré-Friedrichs in-
equality, a(., .) is an inner product on X and thus we can choose 〈., .〉 = a(., .).
In particular, λ = Λ = 1 and the optimal choice is ω = 1. Then, Richardson’s
iteration becomes

a(u(k+1), v ) = a(u(k), v )−
(
a(u(k), v )− f (v )

)
= f (v ), ∀v ∈ X,

which converges in a single step, but we have to solve the original equation for
u. Thus, either the inversion of the matrix An is trivial on each finite dimensional
subspace Xn, or the method is useless. With usual finite element bases, the latter
is true.

Example 3.32. In the other extreme, we would like to use the Rn or L2 inner
product on Xn or X , such that the Riesz isomorphism is easily computable. But
then, the bilinear form a(., .) is unbounded on X . Thus, while for each finite n, the
condition number κn = Λn/λn exists, it converges to infinity if n→∞.

3.2 The conjugate gradient method

Distinguish between V and X .

Introduction 3.33. Relying on Hilbert space structure more than Richardson’s
iteration is the conjugate gradient method (cg), since it uses orthogonal search
directions. Nevertheless, it also relies on constructing search directions from
residuals, such that a Riesz isomorphism enters the same way as before and can
then be used for preconditioning.

The beauty of the conjugate gradient method is, that it is parameter and tuning
free, and it converges considerably faster than a linear iteration method.

Definition 3.34 (Conjugate gradient method). Let V be a Hilbert space and V ∗
its dual. The conjugate gradient method for an iteration vector u(k) ∈ V involves
the residuals r(k) ∈ V ∗ as well as the update direction p(k) ∈ V and the auxiliary
vector w (k) ∈ V . It consists of the steps

1. Initialization: for f and u(0) given, compute

r(0) = f − a(u(0), .)
〈
w (0), v

〉
= r(0)(v ) ∀v ∈ V

p(0) = w (0).

15



2. Iteration step: for u(k), r(k), w (k), and p(k) given, compute

αk = r(k)(w (k))
a(p(k), p(k))

u(k+1) = u(k) + αkp(k)

r(k+1) = r(k) − αka(p(k), .)
〈
w (k+1), v

〉
= r(k+1)(v ) ∀v ∈ V

βk = r(k+1)(w (k+1))
r(k)(w (k))

p(k+1) = w (k+1) + βkp(k)

Remark 3.35. The results on orthogonality and minimization properties of the
cg method in [GRS07] or [Saa00] remain valid in this context. Differences occur
in the interpretation of these properties. The conjugate gradient method does
not necessarily converge in a finite number of steps, and if the bilinear form is
unbounded, no convergence rate is guaranteed.

Definition 3.36. The preconditioned cg method is obtained from above algorithm
by reinterpreting the Riesz isomorphism in the computation of w (k+1) as a precon-
ditioning operation, much alike Definition 3.26 of the preconditioned Richardson
iteration. Thus, the line defining w (k+1) is replaced by

b(w (k+1), v ) = r(k+1)(v ) ∀v ∈ V .

Here, like there, the preconditioner enters naturally from the weak form of the
algorithm.

Definition 3.37. The nth Krylov space as subspace of the Hilbert space V with
inner product b(., .) of the operator A and seed vector w ∈ V is

Kn = Kn(B−1A,w) = span
{
w,B−1Aw, (B−1A)2w, . . . , (B−1Aw)n−1} . (3.18) eq:cg:2

Lemma 3.38. The iterates of the cg method have the following minimization prop-
erties:

∥∥u(k) − u
∥∥
A = min

v∈Kk

∥∥u(0) + v − u
∥∥
A

= min
p∈Pn−1
p(0)=1

∥∥u(0) + p(B−1A)w − u
∥∥
A .

(3.19) eq:cg:3

Theorem 3.39. Let the bilinear form a(., .) be symmetric, and let the spectral
equivalence (3.17) hold. Then, the preconditioned cg method converges and we
have the estimate

u(k) − uA ≤ 2
(√

κ − 1√
κ + 1

)k
u(0) − uA. (3.20) eq:cg:1

Here, κ = Λ/λ is the spectral condition number of the preconditioned problem.
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Chapter 4

Schwarz methods
cha:iteration:schwarz-methods

4.1 Additive Schwarz methods

Introduction 4.1. In this section, we study preconditioners, which are related to
subspace decompositions of the space V or its finite dimensional subspaces. We
will develop the theory in an abstract way, but always keep the model problem (3.1)
in mind when we do so. In particular, the subspaces chosen will be associated
with either coarser mesh levels or with meshes on subdomains of Ω.

This section follows in part [BS02, Chapter 7]. A more detailed discussion with
extension of the methods developed here can be found in [TW05]

4.1.1 The abstract framework

Introduction 4.2. Let V be a Hilbert space with inner product 〈., .〉 and let a(., .) :
V × V be a symmetric and V -elliptic not necessarily bounded bilinear form. Let
a set of auxiliary subspaces {Vj}j=1,...,J of V be chosen such that

V =
J∑

j=1
Vj .

The sum is not required to be direct, that is, a vector v ∈ V may have several
decompositions v =

∑
αjvj with vj ∈ Vj .

lemma:schwarz:1 Lemma 4.3. Let the form a(., .) be bounded and Vj-elliptic. Then, the weak for-
mulation: find uj ∈ Vj such that

a(uj , vj ) = f (vj ), ∀vj ∈ Vj , (4.1) eq:schwarz:1

has a unique solution for all f ∈ V ∗.
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Proof. This is the Lax-Milgram lemma for Vj .

definition:schwarz:1 Definition 4.4 (Ritz-projection). Let the operator Pj : V → Vj be defined such
that Pju ∈ Vj is the unique (Lemma 4.3) solution to the problem

a(Pju, vj ) = a(u, vj ), ∀vj ∈ Vj . (4.2) eq:schwarz:2

We call Pj the A-orthogonal projection or Ritz projection to Vj . Since Vj is a
subspace of V , we will also understand Pj as an endomorphism of V . The left
hand side of this equation induces an operator Aj : Vj → V ∗j by Ajuj = a(uj , .).

lemma:schwarz:ritz Lemma 4.5. The projections Pj as mappings from V to itself are self-adjoint with
respect to the a(., .)-inner product and positive semi-definite. Furthermore, Pj acts
as identity on Pj and there holds P2

j = Pj .

Proof. This is a well-known fact about orthogonal projections, which we will prove
shortly. First, we note that by the uniqueness in Lemma 4.3 Pjuj = uj for all
uj ∈ Vj . Thus, for all u ∈ V : PjPju = Pju. Let now u, v ∈ V arbitrary. Then,
there holds

a(u,Pjv ) = a(Pju,Pjv ) = a(Pjv, Pju) = a(v, Pju) = a(Pju, v ).

Furthermore,

a(Pju, u) = a(u,Pju) = a(Pju,Pju) ≥ 0,

since a(., .) is positive definite.

definition:schwarz:1a Definition 4.6. We define the orthogonal projection operator Πj : V → Vj such
that Πju ∈ Vj is the solution to the problem

〈
Πjuj , vj

〉
=
〈
u, vj

〉
, ∀vj ∈ Vj . (4.3)

We define its dual ΠT
j : V ∗j → V ∗ by
〈
ΠT
j φj , v

〉
V ∗×V =

〈
φj ,Πjv

〉
V ∗j ×Vj

(4.4) eq:schwarz:3

Show that ΠT is an orthogonal projection, and onto which space.

lemma:schwarz:2 Lemma 4.7. There holds

AjPj = ΠT
j A. (4.5) eq:schwarz:15

Proof. Let u, v ∈ V arbitrary. Let vj = Πjv . We rewrite equation (4.2) as
〈
AjPju, v

〉
V ∗×V =

〈
AjPju, vj

〉
V ∗×V =

〈
Au, vj

〉
V ∗×V =

〈
ΠT
j Au, v

〉
V ∗×V .
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Definition 4.8. The additive Schwarz preconditioner for the operator A associated
with the symmetric, and V -elliptic bilinear form a(., .) with respect to the subspace
decomposition Vj is the mapping B : V → V ∗ such that

B−1 =
J∑

j=1
PjA−1. (4.6) eq:schwarz:4

example:schwarz:Jacobi Example 4.9. The Jacobi method may serve as a guiding example for the definition
of these methods. To this end, let V = Rn with its Euclidean inner product 〈., .〉. let
Vj = span{ej} be the space spanned by the jth unit vector. Let A be a symmetric,
positive definite matrix and a(u, v ) = vTAu. Then, equation (4.2) becomes

eTj Auj = eTj Au ⇔ Pju = uj = 1
ajj

(Au)j . (4.7) eq:schwarz:27

Since for this decomposition, the sum V =
⊕
Vj is direct, we obtain with D =

diag(a11, . . . , ann) the matrix representation

(B−1v )j = 1
ajj

(AA−1v )j = 1
ajj
vj ⇔ B−1 = D−1.

We enter this preconditioner into the Richardson method in operator form (3.16)
to obtain the iteration

u(k+1) = u(k) − ωk
J∑

j=1
Pj
(
u(k) − A−1f

)

= u(k) − ωkD−1(Au(k) − f
)
.

(4.8) eq:schwarz:28

lemma:schwarz:3 Lemma 4.10. If A is symmetric and positive definite, so is B−1 as defined in (4.6).

Proof. By Lemma 4.7 and the fact that Pj maps into Vj , we have that

B−1 =
J∑

j=1
A−1
j ΠT

j . (4.9) eq:schwarz:16

Due to equation (4.1), Aj inherits its symmetry and positive definiteness from A,
and thus A−1

j is s.p.d. Therefore, for each term in this sum and arbitrary elements
φ, ψ ∈ V ∗, we have
〈
A−1
j ΠT

j φ, ψ
〉
V×V ∗ =

〈
A−1
j ΠT

j φ,ΠT
j ψ
〉
V×V ∗ =

〈
ΠT
j φ, A−1

j ΠT
j ψ
〉

=
〈
φ, A−1

j ΠT
j ψ
〉
.

The result now follows by linearity.

lemma:schwarz:5 Lemma 4.11. For v ∈ V holds

b(v, v ) ≡ 〈Bv, v〉 = min
v=
∑
vj

J∑

j=1
a(vj , vj ), (4.10) eq:schwarz:5

where the minimum is taken over all possible decompositions of v into a sum of
elements vj ∈ Vj with j = 1, . . . , J .
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Proof. Since B−1 is s.p.d., so is B. Therefore,
〈
., A−1

j .
〉

is an inner product on
V ∗j , for which the Bunyakovsky-Cauchy-Schwarz inequality holds. Thus, for an
arbitrary decomposition v =

∑
vj with vj ∈ Vj , the computation

b(v, v ) =
J∑

j=1
b(v, A−1

j Ajvj ) =
J∑

j=1

〈
ΠT
j Bv, A−1

j Ajvj
〉

≤
J∑

j=1

√〈
ΠT
j Bv, A−1

j ΠT
j Bv

〉√〈
Ajvj , A−1

j Ajvj
〉

≤

√√√√
J∑

j=1

〈
ΠT
j Bv, A−1

j ΠT
j Bv

〉
√√√√

J∑

j=1

〈
Ajvj , A−1

j Ajvj
〉

=
√〈

Bv,
∑

A−1
j ΠT

j Bv
〉
√√√√

J∑

j=1

〈
Ajvj , vj

〉

=
√
b(v, v )

√√√√
J∑

j=1
a(vj , vj ),

yields for arbitrary decompositions

b(v, v ) ≤
J∑

j=1
a(vj , vj ), (4.11) eq:schwarz:17

and thus in particular, that the left hand side is bounded by the minimum of the
right. Now we choose a special decomposition, showing that it cannot be less
than the minimum. To this end, let

vj = A−1
j ΠT

j Bv. (4.12) eq:schwarz:18

By Lemma 4.7, we have
∑

vj =
∑

A−1
j ΠT

j Bv = B−1Bv = v.

Furthermore,
J∑

j=1

〈
Ajvj , vj

〉
=

J∑

j=1

〈
AjA−1

j ΠT
j Bv, A−1

j ΠT
j Bv

〉

=
J∑

j=1

〈
ΠT
j Bv, A−1

j ΠT
j v
〉

=
〈
Bv,

∑
A−1
j ΠT

j Bv
〉

= b(v, v ).
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theorem:schwarz:1 Theorem 4.12. Let A be s.p.d. and B defined by equation (4.6). Then, the spectral
equivalence (3.17) holds with positive constants

Λ(B, A) = max
v∈V

a(v, v )

min
v=
∑
vj

J∑
j=1

a(vj , vj )
, λ(B, A) = min

v∈V

a(v, v )

min
v=
∑
vj

J∑
j=1

a(vj , vj )
. (4.13) eq:schwarz:19

Proof. Here we use the fact, that b(., .) is an inner product on V and that by

b(B−1Av, v ) = a(v, v ) = b(v, B−1Av ),

the operator B−1A is symmetric with respect to this inner product. Thus, the
Rayleigh quotient qualifies to estimate the extremal eigenvalues, for instance,

Λ(B−1A) = max
v∈V

b(B−1Av, v )
b(v, v ) = max

v∈V

a(v, v )

min
v=
∑
vj

J∑
j=1

a(vj , vj )
,

and the same for the minimum.

note:schwarz:1 Note 4.13. In order to estimate the condition number Λ(B, A)/λ(B, A) of a Schwarz
preconditioner, it is now sufficient to bound the two quotients in (4.13) from above
and below. In particular, in order to find a bound for Λ(B, A), we have to find an
estimate of the form

a(v, v ) . min
v=
∑
vj

J∑

j=1
a(vj , vj ), (4.14) eq:schwarz:23

or in other words, a(v, v ) has to be bounded by the sum on the right for any de-
composition v =

∑
vj . On the other hand, in order to bound 1/λ(B, A), we need an

estimate in the opposite direction, where it is sufficient to find one decomposition
v =

∑
vj such that it holds. We reduce these conditions to the following two

abstract assumptions, which guarantee that Theorem 4.12 holds true.

assumption:schwarz:stable-decomposition Assumption 4.14 (Stable decomposition). For each v ∈ V there is a decomposi-
tion

v =
∑

j=1J
vj , vj ∈ Vj ,

such that there holds

min
v=
∑
vj

J∑

j=1
a(vj , vj ) . a(v, v ). (4.15) eq:schwarz:24
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assumption:schwarz:1 Assumption 4.15 (Strengthened Cauchy-Schwarz inequalities). There is a sym-
metric J × J-matrix E with entries εij ∈ [0, 1] and a constant C independent of J ,
such that for the spectral radius ρ(E ) there holds

ρ(E ) ≤ C

and for all 1 ≤ i, j ≤ J , vi ∈ Vi and vj ∈ Vj there holds
∣∣a(vi, vj )

∣∣ ≤ εij
√
a(vi, v i)

√
a(vj , vj ). (4.16) eq:schwarz:25

Note 4.16. Inequality (4.16) with εij ≡ 1 holds by the regular Bunyakovsky-
Cauchy-Schwarz inequality. But for such a matrix, the spectral radius is J . As
the following lemma will reveal, it is necessary to obtain ρ(E ) independent of J to
obtain estimate (4.14).

lemma:schwarz:7 Lemma 4.17. Let the estimate (4.16) hold. Then, estimate (4.14) holds with the
constant ρ(E ).

Proof. Let v ∈ V and its decomposition v =
∑
vj with vj ∈ Vj be chosen arbitrar-

ily. Then,

a(v, v ) = a




∑

i
vi,
∑

j
vj



 =
J∑

i,j=1
a(vi, vj ) ≤

J∑

i,j=1
εij
√
a(vi, vi)

√
a(vj , vj ).

The latter sum corresponds to a matrix-vector product of the form xT Ex, where the
entries of x are of the form

√
a(vi, vi). Since E is symmetric positive definite, this

product can be estimated by ρ(E )|x|2, and thus

a(v, v ) ≤ ρ(E )
J∑

j=1
a(vj , vj ). (4.17) eq:schwarz:38

4.2 Two-level additive Schwarz preconditioner

Introduction 4.18. This preconditioner is in the class of domain decomposition
methods. The attribute two-level refers to the fact that we are considering finite
element discretizations of (3.1) on two finite element meshes, the fine mesh Th on
which we desire to compute the solution, and the auxiliary coarse mesh TH . Both
meshes cover the whole domain Ω (see Figure 4.1), and each cell of the coarse
mesh is the union of cells of the fine mesh (4× 4 fine cells in the figure).

In addition to these two meshes, we introduce subdomains Ω1,Ω2, . . . ,ΩJ of Ω
such that each Ωj is the union of cells in Th. We require that those subdomains
overlap each other like the three examples in Figure 4.1 on the right. A more
precise definition of the required overlap follows.
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Figure 4.1: Fine mesh and coarse mesh (left) for overlapping domain decomposi-
tion. Examples for a subdomain decomposition on the right. fig:schwarz:ddmeshes

definition:schwarz:overlap Definition 4.19. A covering of Ω with subdomains Ωj is called overlapping with
minimal overlap δ , if for each Ωj and all x ∈ Ωj holds:

dist(x, ∂ΩJ \ ∂Ω) < δ ⇒ ∃k 6= j : x ∈ Ωk .

definition:schwarz:finite-covering Definition 4.20. We say that a family of coverings is finite, if there is a constant
NO independent of Th and the number of subdomains, such that for each j the
intersection Ωj ∩Ωk is nonempty for at most NO subdomains Ωk .

Definition 4.21. A smooth partition of unity with respect to the subdomains
Ω1,Ω2, . . . ,ΩJ of Ω is a set of nonnegative functions {φ1, . . . , φJ} ⊂ C∞(Ω) such
that

φj (x) = 0 ∀x ∈ Ω \Ωj , j = 1, . . . , J (4.18) eq:schwarz:6

J∑

j=1
φj (x) = 1 ∀x ∈ Ω. (4.19) eq:schwarz:7

Similarly, we can define partitions of unity in H1(Ω) or partitions of unity which
are piecewise C 1.

Furthermore, we assume that there is a positive constant δ , called overlap, such
that for all j = 1, . . . , J there holds

∥∥∇φj
∥∥
L∞(Ω) .

1
δ , (4.20) eq:schwarz:8

where the implicit constant is independent of h, δ and J .

Note 4.22. The term overlap for δ is justified by the following consideration. Let
x ∈ Ωj be a point which is not in any other Ωi. Then, φj (x) = 1. If (4.20) is to
hold, then it is necessary that dist(x, ∂ΩJ ) ≥ δ (up to a constant, but this constant
is already in (4.20)). Thus, the points of distance less than δ from ∂Ωj must be
elements of another subdomain as well, which is then said to overlap with Ωj .
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example:schwarz:2 Example 4.23. On uniform meshes, overlapping subdomains with an overlap of
δ = nh with n = 1, 2, . . . can be achieved easily by the following procedure:

1. Begin with a non overlapping subdivision {Ω0
j }, for instance aligned with

the mesh cells of TH .

2. Add all cells that share at least a vertex with a cell in Ω0
j to obtain a domain

Ω1
j . After this procedure, two neighboring domains will overlap by two cells,

resulting in δ = 2h.

3. Repeat this procedure to obtain larger overlaps.

On the resulting partitions, a partition of unity in H1 can be constructed with
piecewise linear (bilinear on quadrilaterals) functions. For instance for Ω1

j this
function is constructed as follows:

1. Choose φj (x) = 1/2 in all vertices on ∂Ω0
j .

2. Choose φj (x) = 0 in all vertices on ∂Ω1
j and outside Ω1

j .

3. Choose φj (x) = 1 in all remaining vertices inside Ω0
j .

4. Connect these values by linear (on simplicial meshes), bilinear (quadrilateral
meshes) of trilinear (hexahedral meshes) polynomials inside each mesh cell
T ∈ Th.

This partition of unity achieves the estimate (4.20) with a constant of 1/2.

par:schwarz:1 Notation 4.24. The solution space of our problem is the space V = Vh given by
the finite element space on the mesh Th. We define finite element spaces on Ωj
by

Vj =
{
v ∈ Vh

∣∣∀x ∈ Ω \Ωj : v (x) = 0
}
. (4.21) eq:schwarz:9

Additionally, we define the space V0 ≡ VH as the finite element space on the
coarse mesh TH . Since the meshes are nested, VH is indeed a subspace of Vh.
Thus, we obtain a decomposition of Vh into J + 1 subspaces

Vh = V0 +
J∑

j=1
Vj ,

where the last J are associated with the subdomains. In fact, Lemma 4.27 below
states that already the spaces V1 to VJ are sufficient to span Vh. Nevertheless,
the coarse grid space plays a crucial role in the efficiency of the method due to
Lemma 4.30.
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Definition 4.25. Let the spaces Vj , j = 0, . . . , J be defined as above. Then, the
two-level additive Schwarz preconditioner is defined as

B−1
TLS =

J∑

j=0
PjA−1 =

J∑

j=0
A−1
j ΠT

j , (4.22) eq:schwarz:10

where Pj is defined according to (4.2) and Aj : Vj → V ∗j by
〈
Ajuj , vj

〉
V = a(uj , vj ), ∀uj , vj ∈ Vj . (4.23)

Note 4.26. In order to simplify notation, we have assigned index zero to VH . Thus,
sums in future terms may either start at one, summing over subdomains, or at zero,
summing over all subspaces.

lemma:schwarz:4 Lemma 4.27. There holds

Vh =
J∑

j=1
Vj . (4.24) eq:schwarz:11

Proof. Let Ih : C (Ω)→ Vh be the interpolation operator of the finite element space.
Then, for any given v ∈ Vh define vj = Ih(φjv ), where φj is the function associated
to Ωj of a partition of unity for Ω1, . . . ,ΩJ .

By definition of φj , there holds φjv = 0 on Ω\Ωj . Furthermore, we assumed that a
mesh cell of Th is either completely in Ωj or completely in its complement. Since
nodal values of a cell are located in the cell itself, this implies that Ih(φjv ) = 0 on
Ω \Ωj . Therefore, Ih(φjv ) ∈ Vj .

On the other hand, we use the linearity of the interpolation operator to obtain

J∑

j=1
vj =

J∑

j=1
Ih(φjv ) = Ih



v
J∑

j=1
φh



 = Ihv = v,

thus, the vj are indeed a decomposition of v . Since v ∈ Vh was chosen arbitrarily,
the lemma is proven.

lemma:schwarz:8 Lemma 4.28. Let the covering {Ωj}j=1,...,J for Ω be finite according to Defini-
tion 4.20. Then, the strengthened Cauchy-Schwarz inequalities (4.16) hold with a
spectral radius

ρ(E ) ≤ NO. (4.25) eq:schwarz:26

Proof. The term a(vi, vj ) is nonzero only if the supports of the two functions have
a nonempty intersection. Accordingly, for each index i only a maximum of NO of
the coefficients εij are nonzero. We set these equal to one and use Gershgorin’s
theorem to estimate the greatest eigenvalue.
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lemma:schwarz:6 Lemma 4.29. Let vj ∈ Vj for j = 0, . . . , J be a composition of v ∈ Vh such that

v =
J∑

j=0
vj .

Then,

a(v, v ) .
J∑

j=0
a(vj , vj ), (4.26) eq:schwarz:12

where the implicit constant does not depend on h, H , or J .

Proof. First a note: the inequality would be obvious, if Vh was a direct sum
of the spaces Vj , and it would hold with a constant of one if they were mutually
orthogonal. Thus, we have to show some kind of orthogonality between the spaces.

We start out by stating that

a(v, v ) = a



v0 +
J∑

j=1
vj , v0 +

J∑

j=1
vj





≤ 2



a(v0, v0) + a




J∑

j=1
vj ,

J∑

j=1
vj









= 2



a(v0, v0) +
J∑

j,k=1
a(vj , vk )





≤ 2a(v0, v0) + 2NO

J∑

j=0
a(vj , vj ),

where the last inequality is due to Lemma 4.17 and Lemma 4.28. Since NO is
assumed independent of h, H , and J , the lemma is proven.

lemma:schwarz:stable-decomposition Lemma 4.30 (Stable decomposition). For each v ∈ Vh there exists a decomposi-
tion v =

∑J
j=0 vj with vj ∈ Vj , such that

J∑

j=0
a(vj , vj ) .

(
1 + H

δ

)2
a(v, v ). (4.27) eq:schwarz:13

Proof. Let ĨH : H1
0 (Ω)→ VH be an interpolation operator continuous on H1(Ω), for

instance the interpolation operator by Clement or the one by Scott and Zhang.
For a given function v ∈ Vh, let vH = ĨHv . Then

|vH |1 . |v |1
v − vH0 . H|v |1.

(4.28) eq:schwarz:20
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From (4.28) there holds

a(vH , vH ) = |vH |21 . |v |21 = a(v, v ). (4.29) eq:schwarz:22

Let w = v − vH . Using a partition of unity {φj} for the subdomains {Ωj} and the
nodal interpolant Ih as in the proof of Lemma 4.27, and let

vj = Ih(φjw).

Thus, v =
∑
vj . We point out, that we can use the nodal interpolant, since w is

a finite element function on Th and φj is either smooth or piecewise polynomial.
For the remainder of this proof, we will assume the piecewise polynomial case (see
Example 4.23) and leave the arguments for a smooth function φj to the reader.

The interpolation operator is exact for polynomials of degree k (assuming such an
order for the finite element being used). Therefore,

a(vj , vj ) = |vj |21 . |φjw|21 .∇φjw2
0 + φj∇w2

0.

Using the properties of the partition of unity, we obtain

a(vj , vj ) .
1
δ2χ(Ωj )w2

0 + |χ(Ωj )w|21.

Summing up yields

J∑

j=1
a(vj , vj ) .

J∑

j=1

(
1
δ2χ(Ωj )w2

0 + |χ(Ωj )w|21
)

≤ NO

(
1
δ2w

2
0 + |w|21

)

= NO

(
1
δ2 v − vH

2
0 + |v − vH |21

)

.
H2

δ2 |v |
2
1 + |v |21

=
(

1 + H2

δ2

)
a(v, v ).

(4.30) eq:schwarz:21

The estimate (4.27) now follows from (4.29) and (4.30).

theorem:schwarz:two-level-convergence Theorem 4.31. Under the assumptions made so far in this section, there holds

κ(B−1
TLSAh) = Λ(BTLS, Ah)

λ(BTLS, Ah)
.

(
1 + H

δ

)2
, (4.31) eq:schwarz:14

where the implicit constant is independent of h, δ , H , and J .

Proof. The proof follows Note 4.13. Indeed, Lemma 4.29 proves inequality (4.14)
and Lemma 4.30 proves (4.15).
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Remark 4.32. We have constructed a preconditioner BTLS for the finite element
discretization of the Poisson problem (3.1) such that the preconditioned system has
a bounded condition number independent of the mesh size h. Thus, a Richardson
iteration or a conjugate gradient method using this preconditioner will reduce the
error by a certain amount within a fixed number of steps.

Closer inspection of the estimate (4.31) in view of Example 4.23 reveals a problem
though: typically, δ is of the order of h, such that the estimate becomes

κ(B−1
TLSAh) .

(
1 + H

h

)2
.

If we choose H constant, this is exactly as bad as the condition number of A
itself. Under mild further assumptions, the square on the right hand side can
be avoided [DW94], which is an improvement compared to the operator without
preconditioning, but is not uniform with respect to h. Therefore, we are left with
two options:

1. Increase the overlap such that it is O(H). This procedure yields a uniform
preconditioner, but it introduces a problem: when refining h, more and more
cells belong to several subdomains and thus computations on them have to
be performed several times. Therefore, the effort per preconditioning step is
increased considerably.

2. Keep the overlap at a small multiple of h and choose H such that H/h
is bounded by a constant. Then, the preconditioner remains uniform, the
overlap remains small. This way, the difficulty has been transferred to the
coarse grid problem on TH , since now this problem becomes more and more
difficult to solve, when h decreases.

While the problems of the first option above are inherent and unavoidable, the
second option is at least seemingly optimal and more creativity may be invested
into the solution of the coarse grid problem. Therefore, the latter is usually pre-
ferred. The coarse grid problem then leads to the idea of multigrid methods, which
will be dealt with in Chapter 5.

4.3 Multiplicative Schwarz methods

Example 4.33. If we write the Jacobi method in equation (4.8) for each line, we
get for each j = 1, . . . , J:

u(k+1)
j = u(k)

j − ωkPj
(
u(k) − A−1f

)
. (4.32) eq:schwarz:29
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Since the updates are orthogonal, this is equivalent to the sum in (4.8). In the
Gauß-Seidel method, these projections are done consecutively. For instance, if we
introduce broken indices, we can write it in the form

u(k+ j
J )

j = u(k+ j−1
J )

j − ωkPj
(
u(k+ j−1

J ) − A−1f
)
. (4.33) eq:schwarz:30

This means, we apply the corrections consecutively one after the other. In order
to understand convergence of this method, we are bringing it into a different form
and study the propagation of the error. Let uA−1f be the solution of the problem.
Then, the error propagates like

u(k+ j
J ) − u = u(k+ j−1

J ) − u− ωkPj
(
u(k+ j−1

J ) − u
)

= (I − ωkPj )
(
u(k+ j−1

J ) − u
)
. (4.34) eq:schwarz:31

The error after a whole Gauß-Seidel step is

u(k+1) − u = (I − ωkPJ )(I − ωkPJ−1) . . . (I − ωkP1)
(
u(k) − u

)
. (4.35) eq:schwarz:32

The corresponding error equation for the Jacobi method is

u(k+1) − u =



I − ωk
J∑

j=1
Pj



(u(k) − u
)
. (4.36) eq:schwarz:33

Thus the notions of multiplicative and additive methods.

Introduction 4.34. The example of the Jacobi and Gauß-Seidel methods is generic
in the way that for any subspace decomposition of V into the sum of Vj , we can
define an additive and a multiplicative method. Not surprisingly, their analysis
also rests on the same ingredients.

Definition 4.35. The multiplicative Schwarz preconditioner for the operator A
associated with the symmetric, and V -elliptic bilinear form a(., .) with respect to
the subspace decomposition Vj is the mapping Bm : V → V ∗ such that

B−1
m = (I − EJ )A−1, (4.37) eq:schwarz:34

where EJ is the multiplicative error propagation operator

EJ = (I − PJ )(I − PJ−1) . . . (I − P1). (4.38) eq:schwarz:35

Lemma 4.36. The error after one step of the iteration

u(k+1) = u(k) − B−1
m
(
Au(k) − f

)

is given by

u(k+1) − u = EJ
(
u(k) − u

)
.
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Proof. First, we use the definition of Bm to obtain

u(k+1) = u(k) − (I − EJ )
(
u(k) − u

)
.

Therefore,

u(k+1) − u = u(k) − u− (I − EJ )
(
u(k) − u

)
= (I − I + EJ )

(
u(k) − u

)
.

Remark 4.37. We can define the error propagation operator Ej through the re-
cursion

E0 = I, Ek = (I − Pk )Ek−1, k = 1, . . . , J. (4.39) eq:schwarz:45

lemma:schwarz:9 Lemma 4.38. The error propagation operator Ej has the following porperties:

E∗j−1Ej−1 − E∗j Ej = E∗j−1PjEj−1 (4.40) eq:schwarz:44

I − Ej =
j∑

k=1
PkEk−1. (4.41) eq:schwarz:46

Here, E∗ is the a(., .)-adjoint of E .

Proof. In order to prove the first identity, we use the recursion formula (4.39) to
obtain (using Pj = P∗j and P2

j = Pj )

E∗j Ej = E∗j−1(I − P∗j )(I − Pj )Ej−1

= E∗j−1Ej−1 − E∗j−1PjEj−1.

The second identity is proven by induction with

(I − E0) = I − I = 0,

(I − Ej ) = I − (I − Pj )Ej−1 = PjEj−1 + I − Ej−1 = PjEj−1 +
j−1∑

k=1
PkEk−1.

lemma:schwarz:10 Lemma 4.39. Let Assumption 4.15 (strengthened Cauchy-Schwarz inequalities) be
satisfied. Then the following inequalities hold for 0 ≤ j, k ≤ J and for u, v ∈ V :

a(Pju, v ) ≤
√
a(Pju, u)

√
a(Pjv, v ), (4.42)

a(Pju,Pkv ) ≤ εjk
√
a(Pju, u)

√
a(Pkv, v ). (4.43)
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Proof. By the definition of Pj , the fact that Pj is a(., .)-self adjoint (Lemma 4.5)
and the Bunyakovsky-Cauchy-Schwarz inequality, we have

a(Pju, v ) = a(u,Pjv ) = a(Pju,Pjv )

≤
√
a(Pju,Pju)

√
a(Pjv, Pjv ) ≤

√
a(Pju, u)

√
a(Pjv, v ).

The second inequality follows readily by

a(Pju,Pkv ) ≤ εjk
√
a(Pju,Pju)

√
a(Pjv, Pjv ) = εjk

√
a(Pju, u)

√
a(Pjv, v ).

Theorem 4.40. Let Assumptions 4.15 and the estimate (4.14) be satisfied. Then,
the error propagation operator satisfies

EJ2A ≤ 1− 1
ρ(E )C4.15

< 1, (4.44) eq:schwarz:47

Proof. We use equation (4.40) of Lemma 4.38 to obtain

I − E∗J EJ =
j∑

j=1

(
E∗j−1Ej−1 − E∗j Ej

)
=

J∑

j=1
E∗j−1PjEj−1.

Since the operators Pj are positive semi-definite, by rearranging we obtain for all
v ∈ V the estimate

a(EJv, EJv ) ≤ a(v, v )−
J∑

j=1
a(Ej−1v, PjEj−1v ). (4.45) eq:schwarz:49

Thus, EJ2A ≤ 1, but we have to show that the sum on the right is sufficiently positive
to get an estimate of the convergence rate. Therefore, we start with equation (4.41)
of Lemma 4.38, yielding by Lemma 4.39

a(Pjv, v ) = a(Pjv, Ej−1v ) +
j−1∑

k=1
a(Pjv, PkEk−1v )

≤
√
a(Pjv, v )




√
a(PjEj−1v, Ej−1v ) +

j−1∑

k=1
εjk
√
a(PkEk−1v, Ek−1v )





≤
√
a(Pjv, v )

( j∑

k=1
εjk
√
a(PkEk−1v, Ek−1v )

)

Now let z ∈ RJ be the vector with entries zk =
√
a(PkEk−1v, Ek−1v ). Then, we

rewrite the previous estimate as

a(Pjv, v ) ≤ (Ez)2j .
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Summing over j yields

J∑

j=1
a(Pjv, v ) ≤ Ez2 ≤ ρ(E )2z2 = ρ(E )2

j∑

k=1
a(PkEk−1v, Ek−1v ). (4.46) eq:schwarz:48

At this point, we use Lemma 4.41 to estimate

1
C 2

4.15
a(v, v ) ≤

J∑

j=1
a(Pjv, v ) ≤ ρ(E )2

j∑

k=1
a(PkEk−1v, Ek−1v )

Finally, entering this estimate into (4.45), we obtain

a(EJv, EJv ) ≤ a(v, v )
(

1− 1
ρ(E )2C 2

4.15

)
,

which is the statement of the theorem.

lemma:schwarz:11 Lemma 4.41. Let inequality (4.15) hold for some stable decomposition v =
∑
vj

with the constant C4.15. Then,
J∑

j=1
a(Pjv, v ) ≥

1
C 2

4.15
a(v, v ). (4.47) eq:schwarz:50

Proof. From inequality (4.15) for the decomposition v =
∑
vj , and the definition

of Pj , and the Bunyakovsky-Cauchy-Schwarz inequality, we obtain

a(v, v ) =
J∑

j=1
a(v, vj )

=
J∑

j=1
a(Pjv, vj )

≤

√√√√
J∑

j=1
a(Pjv, Pjv )

√√√√
J∑

j=1
a(vj , vj )

≤

√√√√
J∑

j=1
a(Pjv, Pjv ) C4.15

√
a(v, v ).

Thus,

a(v, v ) ≤ C 2
4.15

J∑

j=1
a(Pjv, Pjv ) = C 2

4.15

J∑

j=1
a(v, Pjv ).

This proves the lemma.
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4.4 Extensions

Introduction 4.42. In order to keep the presentation and the proofs simple, we have
presented Schwarz methods in their most straight forward form. The framework
allows for extensions, which each add minor complications to the proofs and yield
slightly modified results. We are going to mention a few of them.

Remark 4.43. The definition of the additive Schwarz operator in equation (4.6)
and the multiplicative Schwarz operator (4.37) rely on the Ritz projections Pj ,
which in turn, through their definition in (4.2) require solving the local problems
with the operators Aj exactly.

In some cases, it might be advantageous either to solve a different local prob-
lem, or to solve the local problem approximately. In both cases, we can rewrite
the algorithm as using a different local projection P̃j which instead of the Ritz
projection (4.2) is defined by the equation

ãj (P̃juj , vj ) = a(u, vj ), ∀vj ∈ Vj , (4.48) eq:schwarz:42

with a corresponding operator Ãj : Vj → V ∗j . We will continue to assume that
ãj (., .) is symmetric and elliptic in the same way as a(., .) is, but possibly with
different constants.

It is obvious, that we will need assumptions on the modified bilinear forms ãj (., .)and
their relationship with a(., .). But it turns out, that if we make these additional
assumptions, we can make the replacements of Pj by P̃j in the algorithm and the
analysis carries through with just one additional parameter involved.

The modifications in the analysis are as follows: first, replace the stable decompo-
sition lemma 4.30 by assumption 4.44. Then, introduce the additional assumption
4.45, which is ellipticity of the modified forms in Vj with respect to the norm es-
tablished by the original bilinear form. Both assumptions together establish a
relaxed form (only for the sum over j) of spectral equivalence for ãj (., .) and a(., .)
on Vj . The strengthened Cauchy-Schwarz inequalities in Assumption 4.15 remain
the same.

assumption:schwarz:stable-decomposition-2 Assumption 4.44 (Stable decomposition). For each v ∈ Vh there exists a decom-
position v =

∑J
j=0 vj with vj ∈ Vj , such that

J∑

j=0
ãj (vj , vj ) . a(v, v ), (4.49) eq:schwarz:36

where the implicit constant is independent of the number of subdomains J .

assumption:schwarz:local-stability Assumption 4.45 (Local stability). There is a constant ω > 0 such that

a(vj , vj ) ≤ ωãj (vj , vj ) ∀j = 1, . . . , J ∀vj ∈ Vj . (4.50) eq:schwarz:37
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Remark 4.46. With these two assumptions, the convergence estimates change
as follows: first, using the strengthened Cauchy-Schwarz inequalities (4.16), we
extend (4.17) to

a(v, v ) ≤ ωρ(E )
J∑

j=1
ãj (vj , vj ). (4.51) eq:schwarz:39

Then, the proof of Theorem 4.12 can be conducted in the very same way as before,
using (4.49) and (4.51).

Example 4.47. A simple example is the introduction of a relaxation parameter ω
such that

ãj (vj , vj ) = 1
ωa(vj , vj ).

Then, obviously, the local stability (4.50) holds. Furthermore, the constant in the
stable decomposition estimate changes by a factor 1/ω. Thus, in this case, the
upper and lower bounds Λ(B, A) and λ(B, A) change by the same factor and the
condition number stays the same.

Remark 4.48. The second extension is, that we can replace the subspaces Vj by
auxiliary spaces Xj , which are not subspaces of V . In such a situation, we have
to require the existence of a prolongation or extension operator RT

j : Xj → V .
This situation is adapted most easily to our existing framework by introducing
subspaces Vj as the range of RT

j , namely,

Vj =
{
RT
j x ∈ V

∣∣x ∈ Xj
}
. (4.52) eq:schwarz:40

Then, the local forms are defined on the auxiliary spaces,

ãj (., .) : Xj × Xj → R, j = 1, . . . , J, (4.53) eq:schwarz:41

and wherever we need a vector in Vj , we use the interpolation operator. Thus, we
introduce decompositions of the form v =

∑
αjRT

j xj and the operator P̃j : V → Xj
is defined by

ãj (P̃ju, yj ) = a(u, RT
j yj ), ∀yj ∈ Xj . (4.54) eq:schwarz:43

These modifications introduce new operators, but they do not affect the analysis.

Example 4.49. When we implement a block-Jacobi method, we have V = Rn and
m-dimensional subspaces with J = n/m (we assume the quotient is integer). In
the standard formulation with subspaces Vj , the operators Aj , which have to be
inverted, are n×n-matrices with only m rows and columns different from zero. This
is not a useful description of the local problems. Instead, we want an invertible
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matrix Aj ∈ Rm×m. This can be achieved by choosing the extension operator

RT
j : Rm → Rn,




x1
...
xm



 7→





0
...
0

vmj+1 = x1
...

vm(j+1) = xm
0
...
0





. (4.55)

Example 4.50. Other examples are finite element methods with nonnested spaces
on different levels, for instance, when the meshes of a hierarchy are not nested.

Remark 4.51. We have discussed additive and multiplicative Schwarz methods,
but we are not forced to consider only methods organized strictly in one way or
the other. Instead, some of the operations can be performed in the additive, some
in the multiplicative way.

This is advantageous for instance on multicore hardware: an inspection of the
algorithms shows, that application of all operators Pj can be implemented in par-
allel, while the applications of the operators (I − Pj ) in the multiplicative method
is sequential.

Example 4.52. Let the indices j = 1, . . . , J be grouped into M subsets Im, such
that

PiPk = PkPi = 0, ∀i, k ∈ Im.

Such a distribution of indices is also called coloring. Then,

(I − Pi)(I − Pk ) = I − (Pi + Pk ),

and by application to the whole subset and all subsets, the error propagation
operator of the multiplicative method can be rewritten as

EJ =



I −
∑

j∈I1

Pj



 . . .



I −
∑

j∈Im

Pj



 .

While the operations inside each “color” are arranged in an additive and thus
parallelizable manner, the colers themselves are arranged in a multiplicative way.

Example 4.53. Another example is a rearrangement of the two-level Schwarz
method in a way, that the domain decomposition subspaces are still dealt with in
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an additive fashion, while the coarse space is connected multiplicatively. An ex-
ample for a symmetric version of this method is described by the error propagation
operator

ETL =



I −
J∑

j=1
Pj



 (I − P0)



I −
J∑

j=1
Pj



 , (4.56) eq:schwarz:51

which is the two-level operator with Schwarz smoother discussed in the next chap-
ter.
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Chapter 5

Multigrid methods

cha:iteration:multigrid-methods

Introduction 5.1. multigrid Multigrid methods avoid the problems discussed in the
section on two-level Schwarz methods by using not only two, but a whole hierarchy
of mesh levels. On each level, an approximate solver, a so called smoother is
employed, which improves the error somewhat, and then an approximation on a
coarser level is used to improve further. This is done down to the coarsest level,
where we assume that the solution process is cheap.

Definition 5.2. A hierarchy of spaces {V`}0 ≤ ` ≤ L is a sequence of the form

V0 ⊂ V1 ⊂ · · · ⊂ VL. (5.1)

We assume that VL = V is the high resolution space on which we want to
solve (3.1), but where the condition number of the matrix A is bad. On the other
end of the spectrum, we assume that the solution of (3.1) on V0 is easily possible.

Definition 5.3. A multigrid method consists of the following components:

1. A smoother R` acting on the level space V` , usually an iterative method like
Richardson, Jacobi, Gauß-Seidel or a Schwarz method.

2. A coarse grid solver solving the problem on V0 exactly.

3. Transfer operators between the levels V` and V`+1. For standard finite
element methods, this is typically the embedding operator. The transfer in
opposite direction is achieved by the L2-projection.

On a given level V` , the multigrid level consists of an alternating sequence of
smoothing steps and coarse grid corrections, where the latter consist of a projection
of the residual to the space V`−1 and then recursive application of the same
sequence. This is easiest described by the functioneq:mg:5

u1 = MG` (u(0), g), (5.2a) eq:mg:1
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which takes an initial value u(0) and computes an approximation u1 to the solution
to A`u = g by the following scheme: first, for ` = 0 let

MG0(u(0), g) = A−1
0 g0.

On levels ` 6= 0, perform the three steps

• Pre-smoothing: apply mpre steps of a Richardson iteration preconditioned
with the smoother R` :

u(k+1) = u(k) − R−1
`
(
A`u(k) − g`

)
, 0 ≤ k < mpre. (5.2b) eq:mg:2

• Coarse grid correction: let v (0) ∈ V`−1 and g`−1 ∈ V ∗`−1 such that

g`−1 = ΠT
`−1
(
g` − A`u(mpre)

)
, v (0) = 0. (5.2c) eq:mg:3

Then, compute

v (k+1) = MG`−1(v (k), g`−1), 0 ≤ k < mcoarse. (5.2d) eq:mg:4

Let w (0) ∈ V` be given by w (0) = u(mpre) + v (mcoarse).

• Post-smoothing: apply mpost steps of a Richardson iteration preconditioned
with the smoother R` :

w (k+1) = w (k) − R−1
`
(
A`w (k) − g`

)
, 0 ≤ k < mpost. (5.2e) eq:mg:2a

Assign MG(u(0), g` ) = w (mpost).

This method has three parameters, the numbers of pre- and post smoothing steps
mpre and mpost as well as the number of coarse grid iterations mcoarse. Here, it is
the last one which has a strong impact on the structure of the iteration. It defines
what is called the cycle type, which is either V-cycle for mcoarse = 1 or W-cycle
for mcoarse = 2. The structure of the cycles can be seen in Figure 5.1.

Remark 5.4. Figure 5.1 shows that the recursive structure of the W-cycle is much
more complex than that of the V-cycle. The complexity analysis below will show
that higher values of mcoarse do not lead to efficient algorithms.

Definition 5.5. If the numbers of pre- and post smoothing steps in the V-cycle
are dependent on the level ` , we speak of the variable V-cycle. A typical choice
is m` = 2L−`mL, thus doubling the number of smoothing steps whenever stepping
down one level.

Note 5.6. The variable V-cycle with m` as mentioned in the previous definition
has as many smoothing steps per iteration as the W-cycle.
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V0

V1

V1

VL−2

VL−1

VL

V0

V1

V1

VL−2

VL−1

VL

Figure 5.1: Smoothing and grid transfer of the V-cycle (left) and W-cycle (right).
Black lines indicate grid transfer, blue dots are smoothing operations and red
squares are coarse grid solvers. “Time” is left to right. fig:mg:1

Remark 5.7. If we use an additive or multiplicative Schwarz method (omitting
the coarse grid) as our smoother R` , it should be possible in principle to use the
analytical tools of Chapter 4. The difficulty then consists in ensuring that the
spectral radius of the iteration matrix does not grow towards one if we proceed
upwards on our scale of spaces V` . This remark is a todo for the author and an
encouragement for the reader. Hints may be found in [GO95; Xu92].

Remark 5.8. It turns out that the techniques used for the analysis of the V-cycle
and the W-cycle, respectively are quite different. Therefore, we separate them into
two sections.

Theorem 5.9. Let n` be the dimension of V` . Assume that the effort needed to for
the operations in equations (5.2)b/c/e is linear in n` and assume that n`+1/n` ≈ 2d,
where d is the space dimension of the grid. Assume that the effort for the coarse
grid solver is negligible. Then, the effort for one step of the V-cycle is of order nL.
The effort for one step of the W-cycle is of order nL for d ≥ 2, while it is of order
nL log(nL) in one dimension.

Proof. Start the recursion on level L with the function MGL(0, g). This function
calls MGL−1(. . .) mcoarse times. Thus, by recursion, MG` (. . .) is executed mL−`

coarse
times.

By our assumptions, the amount of operations N̆` in MG` (. . .) without the coarse
grid correction is linear in n` , say bounded by Cn` . Then, the overall effort NL on
level L is

NL ≤ C
L∑

`=1
n`mL−`

coarse ≤ C
L∑

`=1
nL2d(l−L)mL−`

coarse = CnL
L∑

`=1

(mcoarse
2d

)l
. (5.3) eq:mg:6

39



It remains to notice that the sum converges and is bounded independent of L if
and only if mcoarse/2d < 1. The statements of the theorem follow immediately,
observing that L ' lognL.

Lemma 5.10. Let B−1
` be the operator associated with the action of the multigrid

preconditioner on level ` for ` = 0, . . . , L. Then, the error after one step of the
multigrid method has the form

u(k+1) − u = EL
(
u(k) − u

)
, (5.4) eq:mg:7

where for ` = 0, . . . , L we denote by E` the error propagation operator

E` =
(
I − R−1

` A`
)mpost (I − B−1

`−1A`−1P`−1
)mcoarse (I − R−1

` A`
)mpre (5.5) eq:mg:8

Proof. For the smoother, we use the standard technique for Richardson’s method
outlined in Lemma 3.16. For the coarse grid correction, we use Lemma 4.7.

Note 5.11. The structure of the error propagation operator (5.5) already suggests
the course of the multigrid analysis (as well as the design of smoothers). Namely,
we will have to decompose Vl into Vl−1 and its A-orthogonal complement. Then,
we use the induction argument that I−B−1

`−1A`−1 is is small on Vl−1, while bounded
on its complement. Vice versa, I − R−1

` A` must be bounded on all of V` , while
providing good reduction properties on the complement of Vl−1.

5.1 The V-cycle

assumption:mg:1 Assumption 5.12. Let the smoother R` be symmetric, positive definite and let the
following two conditions hold, the second for some positive constant α independent
of ` :eq:mg:9

a
(
(I − R−1

` A` )v, v
)
≥ 0 ∀v ∈ V` , (5.6a) eq:mg:10

r(w,w) ≤ αa(w,w) ∀v ∈ V` , w = (I − P`−1)v (5.6b) eq:mg:20

Theorem 5.13. Let a(., .) be symmetric, positive definite and let Assumption 5.12
hold. Then, the V-cycle operator with mpre = mpost = m admits the estimate

0 ≤ a(
(
(I − B−1

` A` )v, v
)
≤ δa(v, v ), ∀v ∈ V` , (5.7) eq:mg:11

where

δ = α
α + 2m. (5.8) eq:mg:12

In particular, the contraction number of the multigrid method is bounded by a
number less than 1, independent of the level.
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Proof. 1 First, abbreviate K` = I − R−1
` A` , the error propagation operator of a

smoothing step. Now we will prove the theorem by induction over ` . First, since
B0 = A0, it holds on level zero. For higher levels, we derive from (5.5) the relation

E` = I − B−1
` A` = Km

`

(
(I − P`−1) + (I − B−1

`−1A`−1)P`−1

)
Km
` . (5.9) eq:mg:13

Non-negativity follows readily by the induction argument and the same properties
of the smoother and the Ritz-projection. For the upper bound, let w = Km

` v to
obtain by the induction hypothesis

a(E`v, v ) ≤ a
(
(I − P`−1)w,w

)
+ δa(P`−1w,w)
= (1− δ)a

(
(I − P`−1)w,w

)
+ δa(w,w). (5.10) eq:mg:14

Now we use the smoothing hypothesis anf the Bunyakovsky-Cauchy-Schwarz in-
equality for the bilinear form r(., .) associated with the smoothing operator R` to
obtain

a
(
(I − P`−1)w,w

)
= 〈(I − P`−1)w, A`w〉
=
〈
R` (I − P`−1)w,R−1

` A`w
〉

= r
(
(I − P`−1)w,R−1

` A`w
)

≤
√
r
(
(I − P`−1)w, (I − P`−1)w

)√
r
(
R−1
` A`w,R−1

` A`w
)

≤
√
αa
(
(I − P`−1)w, (I − P`−1)w

)√
a
(
R−1
` A`w,w

)

Using the projection property of I − P`−1, we obtain

a
(
(I − P`−1)w,w

)
≤ αa

(
R−1
` A`w,w

)
= αa

(
(I − K` )K 2m

` v, v
)
. (5.11) eq:mg:15

The smoothing assumption also guarantees that the spectrum of K` is contained
in the interval [0, 1]. Therefore,

a
(
(I − K` )K 2m

` v, v
)
≤ a

(
(I − K` )K i

`v, v
)
, i = 0, . . . , 2m, (5.12) eq:mg:16

yielding by deflating the telescoping sum

a
(
(I − K` )K 2m

` v, v
)
≤ 1

2m

2m−1∑

i=0
a
(
(I − K` )K i

`v, v
)

= 1
2ma

(
(I − K 2m

` )v, v
)

(5.13) eq:mg:17

Combining (5.10), (5.11), and (5.13), we obtain

a(E`v, v ) ≤ (1− δ) α2ma
(
(I − K 2m

` )v, v
)

+ δa(Km
` v, Km

` v )

= (1− δ) α2ma(v, v ) +
(
δ − (1− δ) α2m

)
a(Km

` v, Km
` v ).

(5.14)

1This version of the proof is taken from [AFW97]. It can also be found in [BH83; Bra93].
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Finally, we enter δ = α/(α + 2m) to obtain

δ − (1− δ) α2m = 0,

and thus

a(E`v, v ) ≤
(
1− α

α + 2m

) α
2ma(v, v ) = α

α + 2ma(v, v ). (5.15) eq:mg:18

Lemma 5.14. Let R` be the scaled additive Schwarz method

R−1
a = ω

J∑

j=1
PjA−1, (5.16) eq:mg:19

where the subspaces Vj are defined by overlapping subdomains Ωj as in (4.21).
Not that we do not include the coarse space here. Then, for ω sufficiently small,
this smoother fulfills Assumption 5.12.

Proof. The positive definiteness and symmetry of the smoother have been proven
in an abstract way in Lemma 4.10. In order to prove estimate (5.6a), we observe
that by Lemma 4.11 and Lemma 4.29

r(v, v ) = ω min
v=
∑
vj
a(vj , vj ) & ωa(v, v ),

where the implicit constant depends on the number of overlaps in Definition 4.20.
Thus, we can choose ω independent of ` such that

r(v, v ) ≥ a(v, v ) ∀v ∈ V` .

Accordingly, R` − A` is positive definite, and since R−1
` is as well, so is I −

R−1
` A` . It remains to prove (5.6b), but this is exactly the second half of the proof

of Lemma 4.30, if we replace the Clément interpolant into the coarse space by the
Ritz projection.
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