
Numerical Analysis of
Ordinary Differential Equations

Guido Kanschat

June 19, 2018

Preface

These notes are a short presentation of the material presented in my lecture.
They follow the notes by Rannacher (Numerik 1 in German) as well as the books
by Hairer, Nørsett, and Wanner [HNW93] and Hairer and Wanner [HW10].
Furthermore, I used the book by Deuflhard and Hohmann [DB08]. Historical
remarks are in part taken from the article by Butcher [But96].

I am always thankful for hints and errata. But please verify that you have the
latest version, which is available on github.

My thanks go to Dörte Jando, Markus Schubert, Lukas Schubotz, and David
Stronczek for their help with writing and editing these notes.

1

Index for shortcuts

IVP Initial value problem, s. definition ?? on page ??
BDF Backward differencing formula, s. example 5.0.4 on page 79
ODE Ordinary differential equation
DIRK Diagonal implicit Runge-Kutta method
ERK Explicit Runge-Kutta method
IRK Implicit Runge-Kutta method
LMM Linear multistep method, s. Definition 5.1.1 on page 79
VIE Volterra integral equation, s. Remark ?? on page ??

Index for symbols

C The set of complex numbers
ei The unit vector of Cd in direction d
< Real part of a complex number
R The set of real numbers
Rd The d-dimensional vectorspace of the real d-tuple
u The exact solution of an ODE or IVP
uk The exact solution at time step tk
yk The discrete solution at time step tk
〈x, y〉 The Euclidean scalar product in the space Rd or Cd
|x| The absolute value of a real number, the modulus of a complex

number, or the Euclidean norm in Rd or Cd, depending on its
argument

‖u‖ A norm in a vector space (with exception of the special cases
covered by |x|)

2

Contents

1 Initial Value Problems and their Properties 3

1.1 Modeling with ordinary differential equations 3

1.2 Introduction to initial value problems 6

1.3 Linear differential equations and Grönwall’s inequality 10

1.4 Well-posedness of the IVP . 16

2 Explicit One-Step Methods and Convergence 21

2.1 Introduction . 21

2.2 Error analysis . 24

2.3 Runge-Kutta methods . 28

2.4 Estimates of the local error and time step control 38

2.4.1 Extrapolation methods . 39

2.4.2 Embedded Runge-Kutta methods 41

2.5 Continuous Runge-Kutta methods 43

3 Implicit One-Step Methods and Long-Term Stability 45

3.1 Monotonic initial value problem 45

3.1.1 Stiff initial value problems 48

3.2 A- and B-stability . 50

3.2.1 L-stability . 54

3.3 General Runge-Kutta methods 55

0

3.3.1 Existence and uniqueness of discrete solutions 58

3.4 Methods based on quadrature and B-stability 62

3.4.1 Gauss-, Radau-, and Lobatto-quadrature 62

3.4.2 Collocation methods . 63

3.5 Considerations on implementation 68

4 Newton and quasi-Newton methods 70

4.1 Basics of nonlinear iterations . 70

4.2 Globalization . 72

4.3 Practical considerations . 76

5 Linear Multistep Methods 78

5.1 Definition and consistency of LMM 80

5.2 Properties of difference equations 84

5.3 Stability and convergence . 86

5.3.1 Starting procedures . 90

5.4 LMM and stiff problems . 92

5.4.1 Relaxed A-stability . 93

5.5 Predictor-corrector schemes . 94

6 Boundary Value Problems 96

6.1 Introduction . 96

6.2 Derivatives of the solutions of IVP with respect to data 97

6.2.1 Derivatives with respect to the initial values 97

6.2.2 Derivatives with respect to the right hand side function . 100

6.3 Theory of boundary value problems 101

6.4 Shooting methods . 106

6.4.1 Single shooting method 106

6.4.2 Multiple shooting method 109

1

7 Second Order Boundary Value Problems 114

7.1 2nd order two-point boundary value problems 114

7.2 Existence, stability, and convergence 119

7.3 The Laplacian and harmonic functions 123

7.3.1 Properties of harmonic functions 124

7.4 Finite differences . 126

7.5 Evolution equations . 130

7.6 Fundamental solutions . 130

A Appendix 131

A.1 Properties of matrices . 131

A.1.1 The matrix exponential 131

A.2 The Banach fixed-point theorem 132

A.3 The implicit and explicit Euler-method 132

2

Chapter 1

Initial Value Problems and
their Properties

1.1 Modeling with ordinary differential equations

Example 1.1.1 (Exponential growth). Bacteria are living on a substrate with
ample nutrients. Each bacteria splits into two after a certain time ∆t. The
time span for splitting is fixed and independent of the individuum. Then, given
the amount u0 of bacteria at time t0, the amount at t1 = t0 + ∆t is u1 = 2u0.
Generalizing, we obtain

un = u(tn) = 2nu0, tn = t0 + n∆t.

After a short time, the number of bacteria will be huge, such that counting
is not a good idea anymore. Also, the cell division does not run on a very
sharp clock, such that after some time, divisions will not only take place at the
discrete times t0 + n∆t, but at any time between these as well. Therefore, we
apply the continuum hypothesis, that is, u is not a discrete quantity anymore,
but a continuous one that can take any real value. In order to accommodate for
the continuum in time, we make a change of variables:

u(t) = 2
t−t0
∆t u0.

Here, we have already written down the solution of the problem, which is hard
to generalize. The original description of the problem involved the change of u
from one point in time to the next. In the continuum description, this becomes
the derivative, which we can now compute from our last formula:

d
dtu(t) =

ln 2

∆t
2
t−t0
∆t u0 =

ln 2

∆t
u(t).

3

We see that the derivative of u at a certain time depends on u itself at the same
time and a constant factor, which we call the growth rate α. Thus, we have
arrived at our first differential equation

u′(t) = αu(t). (1.1)

What we have seen as well is, that we had to start with some bacteria to get
the process going. Indeed, any function of the form

u(t) = ceαt

is a solution to equation (1.1). It is the initial value u0, which anchors the
solution and makes it unique.

Example 1.1.2 (Predator-prey systems). We add a second species to our bac-
teria example. Let’s say, we replace the bacteria by sardines living in a nutrient
rich sea, and we add tuna eating sardines. The amount of sardines eaten de-
pends on the likelyhood that a sardine and a tuna are in the same place, and
on the hunting efficiency β of the tuna. Thus, equation (1.1) is augmented by a
negative change in population depending on the product of sardines u and tuna
v:

u′ = αu− βuv.

In addition, we need an equation for the amount of tuna. In this simple model,
we will make two assumptions: first, tuna die of natural causes at a death rate of
γ. Second, tuna procreate if there is enough food (sardines), and the procreation
rate is proportional to the amount of food. Thus, we obtain

v′ = δuv − γv.

Again, we will need initial populations at some point in time to compute ahead
from there.

Remark 1.1.3. The Lotka-Volterra-equations have periodic solutions. Even
though none of these exist in closed form the sulotions can be simulated: Lotka
and Volterra became interested in this system as they had found that the amount
of predatory fish caught had increased during World War I. During the war years
there was a strong decrease of fishing effort. In conclusion, they thought, there
had to be more prey fish.

A (far too rarely) applied consequence is that in order to diminish the amount
of e.g. foxes one should hunt rabbits as foxes feed on rabbits.

Example 1.1.4 (Graviational two-body systems). According to Newton’s law
of universal gravitation, two bodies of masses m1 and m2 attract each other
with a force

F1 = G
m1m2

r3
r1,

4

Figure 1.1: Plot of a solution to the Lotka-Volterra equation with parameters
α = 2

3 , β = 4
3 , δ = γ = 1 and initial values u(0) = 3, v(0) = 1. Solved with a

Runge-Kutta method of order five and step size h = 10−5

where F1 is the force vector acting on m1 and r1 is the vector pointing from m1

to m2 and r = |r1| = |r2|.

Newton’s second law of motion on the other hand relates forces and acceleration:

F = mx′′,

where x is the position of a body in space.

Combining these, we obtain equations for the positions of the two bodies:

x′′i = G
m3−i

r3
(xi − x3−i), i = 1, 2.

This is a system of 6 independent variables. Nevertheless, it can be reduced
to three by using that the center of mass moves inertially. Then, the distance
vector is the only variable to be computed for:

r′′ = −Gm
r3

r.

Intuitively, that we need an initial position and an initial velocity for the two
bodies. Later on, we will see that this can actually be justified mathematically.

Example 1.1.5 (Celestial mechanics). Now we extend the two-body system
to a many-body system. Again, we subtract the center of mass, such that we
obtain n sets of 3 equations for an n+ 1-body system. Since forces simply add
up, this system becomes

xi = −G
∑
j 6=i

mj

r3
ij

rij . (1.2)

5

Here, rij = rj − ri and rij = |rij |. Initial data for the solar system can be
obtained from

https://ssd.jpl.nasa.gov/?horizons

1.2 Introduction to initial value problems

1.2.1 Definition (Ordinary differential equations): An ordinary
differential equation (ODE) is an equation for a function u(t), defined
on an interval I ⊂ R and with values in the real or complex numbers or
in the space Rd (Cd), of the form

F
(
t, u(t), u′(t), u′′(t), . . . , u(n)(t)

)
= 0. (1.3)

Here F (. . .) denotes an arbitrary function of its arguments. The order
n of a differential equation is the highest derivative which occurs. If the
dimension d of the value range of u is higher than one, we talk about
systems of differential equations.

Remark 1.2.2. A differential equation, which is not ordinary, is called partial.
These are equations or systems of equations, which involve partial derivatives
with respect to several independent variables. While the functions in an ordinary
differential equation may be dependent on additional parameters, derivatives
are only taken with respect to one variable, typically, but not exclusively, this
variable is time. Due to the fact that this manuscript just deals with ordinary
differential equations, the adjective will be omitted in the following.

1.2.3 Definition: An explicit differential equation of first order is
a equation of the form

u′(t) = f(t, u(t)) (1.4)
or shorter: u′ = f(t, u).

A differential equation of order n is called explicit, if it is of the form

u(n)(t) = F
(
t, u(t), u′(t), . . . , u(n−1)(t)

)

1.2.4 Lemma: Every differential equation of higher order can be written
as a system of first-order differential equations. If the equation is explicit,
then the system is explicit.

6

Proof. By the introduction of additional variables u0(t) = u(t), u1(t) = u′(t) to
un−1(t) = u(n−1)(t), each differential equation of order n can be transformed
into a system of n differential equations of first order. This system has the form

u′0(t)− u1(t)
u′1(t)− u2(t)

...
u′n−2(t)− un−1(t)

F
(
t, u0(t), u1(t), . . . , un−1(t), u′n−1(t)

)

 =


0
0
...
0
0

 . (1.5)

In the case of an explicit equation, the system has the form
u′0(t)
u′1(t)
...

u′n−2(t)
u′n−1(t)

 =


u1(t)
u2(t)
...

un−1(t)
F
(
t, u0(t), u1(t), . . . , un−1(t)

)

 . (1.6)

Example 1.2.5. The differential equation

u′′ + ω2u = f(t) (1.7)

can be transformed into the system

u′1 − u2 = 0,

u′2 + ω2u1 = f(t).
(1.8)

The transformation is not uniquely determined. In this example, a more sym-
metric system can be obtained:

u′1 − ωu2 = 0,

u′2 + ωu1 = f(t).
(1.9)

From a numerical perspective, system 1.9 should be chosen over refeq:awa:18
to avoid loss of significance or overflow, i.e. if |ω| � 1 or |ω| � 1.

7

1.2.6 Definition: A differential equation of the form (1.4) is called
autonomous, if the right hand side f is not explicitly dependent on t,
i.e.

u′ = F (u). (1.10)

Each differential equation can be transformed into an autonomous dif-
ferential equation. This is called autonomization.

U =

(
u
t

)
, F (U) =

(
f(t, u)

1

)
, U ′ = F (U)

A method which provides the same solution for the autonomous dif-
ferential equation as for the original IVP, is called invariant under
autonomization.

Differential equations usually provide sets of solutions from which we have to
choose a solution. An important selection criteria is setting an initial value
which leads to a well-posed problem (see below).

1.2.7 Definition: Given a point (t0, u0) ∈ R×Rd. Furthermore, let the
function f(t, u) with values in Rd be defined in a neighborhood I ×U ⊂
R × Rd of the initial value. Then an initial value problem (IVP) is
defined as follows: find a function u(t), such that

u′(t) = f
(
t, u(t)

)
(1.11a)

u(t0) = u0 (1.11b)

1.2.8 Definition: We call a continuously differentiable function u(t)
with u(t0) = 0 a local solution of the IVP (1.11), if there exists a
neighborhood J of the point in time t0 in which u and f(t, u(t)) are
defined and if the equation (1.11a) holds for all t ∈ J .

Remark 1.2.9. We introduced the IVP deliberately in a “local” form because
the local solution term is the most useful one for our purpose. Due to the fact
that the neighborhood J in the definition above can be arbitrarily small, we will
have to deal with the extension to larger intervals below.

Remark 1.2.10. Through the substitution of t 7→ τ with τ = t−t0 it is possible
to transform every IVP at the point t0 to a IVP in point 0. We will make use
of this fact and soon always assume t0 = 0.

8

1.2.11 Lemma: Under the assumption that the right hand side f is
continuous in both arguments, the function u(t) is a solution of the
initial value problem (1.11) if and only if it is a solution of the Volterra
integral equation (VIE)

u(t) = u0 +

∫ t

t0

f
(
s, u(s)

)
ds. (1.12)

The formulation as integral equation allows on the other hand a more
general solution term, because the problem is already well-posed for func-
tions f(t, u), which are just integrable with respect to t. In that case the
solution u would be just absolutely continuous and not continuously dif-
ferentiable.

Remark 1.2.12. Both the theoretical analysis of the IVP and the numerical
methods (with exception of the BDF methods) in this lecture notes, solve actu-
ally never the IVP (1.11) but always the associated integral equation (1.12).

1.2.13 Theorem (Peano’s existence theorem): Let the function
f(t, u) be continuous on the closed set

D =
{

(t, u) ∈ R× Rd
∣∣ |t− t0| ≤ α, |u− u0| ≤ β

}
,

where α, β > 0. Then there exists a solution u(t) ∈ C1(I) on the interval
I = [t0 − T, t0 + T] with

T = min

(
α,

β

M

)
, M = max

(t,u)∈D
|f(t, u)|.

The proof of this theorem is of little consequence for the remainder of these
notes. For its verification, we refer to textbooks on the theory of ordinary
differential equations.

Remark 1.2.14. The Peano existence theorem does not make any statements
about the uniqueness of a solution and also just guarantees local existence.
The second limitation is addressed by the following theorem. The first will be
postponed to section 1.4.

1.2.15 Theorem (Peano’s continuation theorem): Let the assump-
tions of Theorem 1.2.13 hold. Then, the solution can be extended to an
interval Im = [t−, t+] such that the points

(
t−, u(t−)

)
and

(
t+, u(t+)

)
are on the boundary of D. Neither the values of t, nor of u(t) need to
be bounded as long as f remains bounded.

9

Example 1.2.16. The IVP

u′ = 2
√
|u|, u(0) = 0,

has solutions u(t) = t2 and u(t) = 0.

Example 1.2.17. The functions 1/(t− t0) are solutions to the IVP

u′ = −u2, u(t0) = 1.

1.3 Linear differential equations and Grönwall’s
inequality

1.3.1. The examination of linear differential equation turns out to be partic-
ularly simple. On the other hand, results obtained here will provide us with
important statements for general non-linear IVP. Therefore we pay particular
attention to the linear case.

1.3.2 Definition: An IVP according to definition 1.2.7 is called linear
if the right hand side f is an affine function of u. Thus, we can write it
in the form

u′(t) = A(t)u(t) + b(t) ∀t ∈ R (1.13a)
u(t0) = u0 (1.13b)

with a continuous matrix function A : R→ Cd×d. If in addition b(t) ≡ 0,
we call it homogeneous.

factor.tex factor.tex

1.3.3 Definition: Let the matrix function A : I → Cd×d be continuous.
Then the function defined by

M(t) = exp

(
−
∫ t

t0

A(s) ds

)
(1.14)

is called integrating factor of the equation (1.13a).

factor.tex

Corollary 1.3.4. The integrating factor M(t) has the properties

M(t0) = I (1.15)
M ′(t) = −M(t)A(t). (1.16)

10

1.3.5 Lemma: A solution of the IVP (1.13) is given through the repre-
sentation

u(t) = M(t)−1

(
u0 +

∫ t

t0

M(s)b(s) ds

)
(1.17)

with the integrating factor M(t) of the equation (1.14). This solution
exists for all t ∈ R.

Proof. We consider the auxiliary function w(t) = M(t)u(t) with the integrating
factor M(t) of the equation (1.14). Using the chain rule, there holds

w′(t) = M(t)u′(t) +M ′(t)u(t) = M(t)u′(t)−M(t)A(t)u(t). (1.18)

Comparing this to the differential equation (1.13a), we see that w solves

w′(t) = M(t)b(t).

This can be integrated directly to obtain

w(t) = u0 +

∫ t

t0

M(t)b(t),

where we use that w(t0) = u0. According to lemma A.1.3, about the matrix
exponential, M(t) is invertible for all t. With the definition of w(t) we are
therefore able to solve for u(t), which results in the equation (1.17). The global
solvability follows from the fact that the solution is defined for arbitrary t ∈
R.

Example 1.3.6. The equation in example 1.2.5 is linear and can be written in
the form of (1.13) with

A(t) = A =

(
0 ω
−ω 0

)
b(t) = f(t).

Let now f(t) ≡ 0. The Jordan canonical form of A is

A = C−1

(
ωi

−ωi

)
C

with a suitable transformation matrix C. The integrating factor is

M(t) = eAt = C−1

(
eωi

e−ωi

)
C =

(
cosωt sinωt
− sinωt cosωt

)
.

11

Thus, given an initial value (u0, v0)T , the solution is

u(t) =

(
cosωt sinωt
− sinωt cosωt

)(
u0

v0

)
.

The missing details in this argument and the case for an inhomogenety f(t) =
cosαt are left as an exercise.

Remark 1.3.7. If the function b(t) in (1.13a) is only integrable, the function
u(t) defined in (1.17) is absolutely continuous and thus differentiable almost
everywhere. The chain rule (1.18) is applicable in all points of differentiability
and w(t) solves the Volterra integral equation corresponding to (1.13). Thus,
the representation formula (1.17) holds generally for solutions of linear Volterra
integral equations.

1.3.8 Lemma (Grönwall): Let be w(t), a(t) and b(t) be nonnegative,
integrable functions, such that a(t)w(t) is integrable. Furthermore, let
b(t) be monotonically nondecreasing and let w(t) satisfy the integral
inequality

w(t) ≤ b(t) +

∫ t

t0

a(s)w(s) ds, t ≥ t0. (1.19)

Then, for almost all t ≥ t0 there holds:

w(t) ≤ b(t) exp

(∫ t

t0

a(s) ds

)
. (1.20)

Proof. Using the integrating factor

m(t) = exp

(
−
∫ t

t0

a(s) ds

)
,

1

m(t)
= exp

(∫ t

t0

a(s) ds

)
,

we introduce the auxiliary function

v(t) = m(t)

∫ t

t0

a(s)w(s) ds,

This function is absolutely continuous and almost everywhere

v′(t) = m(t)a(t)

[
w(t)−

∫ t

t0

a(s)w(s) ds

]
.

By assumption (1.19), the bracket on the right is bounded by b(t). Thus,

v′(t) ≤ m(t)a(t)b(t)

12

and since v(t0) = 0 by its definition,

v(t) ≤
∫ t

t0

m(s)a(s)b(s) ds.

From the definition of v(t), we obtain∫ t

t0

a(s)w(s) ds =
1

m(t)
v(t) ≤ 1

m(t)

∫ t

t0

m(s)a(s)b(s) ds

Finally, since b(t) is nondecreasing we obtain almost everywhere∫ t

t0

a(s)w(s) ds ≤ b(t)

m(t)

∫ t

t0

a(s) exp

(
−
∫ s

t0

a(r) dr

)
ds

=
b(t)

m(t)

[
− exp

(
−
∫ s

t0

a(r) dr

)]t
t0

=
b(t)

m(t)

(
m(t0)−m(t)

)
=

b(t)

m(t)
− b(t)

Now, entering into the integral inequality (1.19), we obtain

w(t) ≤ b(t) +

∫ t

t0

a(s)w(s) ds =
b(t)

m(t)
,

which proves the lemma.

Remark 1.3.9. On the form of the requirements (1.19) as well as the esti-
mation (1.20), we can see that Grönwall’s inequality is basically based on the
construction of a majorant for w(t), which satisfies a linear IVP.

1.3.10 Corollary: Let the functions u(t) and v(t) be two solutions of
the linear differential equation (1.13a). If both functions coincide in a
point t0 then they are identical.

Proof. The difference w(t) = v(t)− u(t) solves the integral equation

w(t) =

∫ t

t0

A(s)w(s) ds.

Hence |w(t)| satisfies the integral inequality

|w(t)| ≤
∫ t

t0

|A(s)||w(s)|ds,

from which we conclude with Grönwall’s inequality (1.20) for b(t) = 0, that
|w(t)| = 0 for all t and therefore u(t) = v(t).

13

Corollary 1.3.11. The representation formula (1.17) in Lemma 1.3.5 defines
the unique solution to the IVP (1.13). In particular, solutions of linear IVP are
always defined on the whole real axis.

Example 1.3.12. Let A ∈ Cd×d be diagonalizable with possibly repeated eigen-
values λ1, . . . , λd and corresponding eigenvectors ψ(i). Let Ψ be the matrix of
column vectors ψ(i). Then, the solution of the IVP

u′ = Au,

u(0) = u0,

is given by the formula

u(t) = eAtu0 = Ψ exp

λ1

. . .
λd

Ψ−1u0.

This is due to the fact, that M(t) = e−At and e−ΨAψ−1t = Ψe−AtΨ−1.

1.3.13 Lemma: The solutions of the homogeneous, linear differential
equation

u′(t) = A(t)u(t) (1.21)

with u : R→ Rd, define a vector space of dimension d. Let {ψ(i)}i=1,...,d

be a basis of Rd. Then the solutions ϕ(i)(t) of the equation (1.21) with
initial values ϕ(i)(0) = ψ(i) form a basis of the solution space. The
vectors {ϕ(i)(t)} are linear independent for all t ∈ R.

Proof. At first we observe that for two solutions u(t) and v(t) of the equa-
tion (1.21), their sum and their scalar multiples are solutions too, due to lin-
earity of the derivative and the right hand side. Therefore the vector space
structure is proven.

Let now ϕ(i)(t) be solutions of the IVP with linear independent initial values
{ψ(i)}. As a consequence the functions are linear independent as well.

Assume that w(t) is a solution of the equation (1.21), which cannot be written
as a linear combination of ψ(i). Then w(0) is not a linear combination of the
vectors ψ(i): else let’s say w(0) =

∑
αiψ

(i), then w(t) =
∑
αiϕ

(i)(t) would be
a linear combination because of uniqueness proven in corollary 1.3.10. Since
{ψ(i)} according to the assumtions is a basis of Rd, such a w(0) cannot exist.
Hence it is shown that ϕ(i)(t) is a basis of the solution space of dimension d.

14

It remains to show that the ϕ(i)(t) are linearly independent for all t ∈ R. To
this end, assume that the set ϕ(i)(t) is linearly dependent for a value t1. Then
the following holds true without loss of generality

ϕ(d)(t1) =

d−1∑
i=1

αiϕ
(i)(t1) =: w(t).

Again according to corollary 1.3.10 we have ϕ(d) ≡ w, moreover ϕ(d)(0) = w(0)
which again is a contradiction to the assumption ψ(d) is a linear combination of
the other initial values.

1.3.14 Definition: A basis {ϕ(1), . . . , ϕ(d)} of the solution space of
the linear differential equation (1.21), in particular the basis with initial
values ϕ(i)(0) = ei, is called fundamental system of solutions. The
matrix function

Y (t) =
(
ϕ(1)(t) . . . ϕ(d)(t)

)
(1.22)

with column vectors ϕ(i)(t) is called fundamental matrix.

1.3.15 Corollary: The fundamental matrix is regular for all t ∈ R and
solves the IVP

Y ′(t) = A(t)Y (t)

Y (0) = I.

Proof. The initial value is part of the definition. On the other hand, splitting
the the matrix valued IVP into its column vectors, we obtain the original IVP
defining the solution space. Regularity follows from linear independence of
solutions for any t.

15

1.4 Well-posedness of the IVP

1.4.1 Definition: A mathematical problem is called well-posed if the
following Hadamard conditions are satisfied:

1. A solution exists.

2. The solution is unique.

3. The solution is continuously dependent on the data.

The third condition in this form is purely qualitative. Typically, in order
to characterize problems with good approximation properties, we will
require Lipschitz continuity, which has a more quantitative character.

Example 1.4.2. The IVP

u′ = 3
√
u, u(0) = 0,

has solutions of the form

u(t) =

{
0

c
(

2
3 t
)3/2

.

Thus, the solution is not unique and therefore, the IVP is not well-posed. Let
now the initial value be nonzero, but slightly positive. Then, a small perturba-
tion, which changes its sign, will have dramatic effect on the solution.

1.4.3 Definition: The function f(t, y) satisfies on its domain D =
I × Ω ⊂ R × Rd an uniformly continuous Lipschitz condition if it is
Lipschitz continuous with regard to y, i.e., it exists a positive constant
L, such that

∀t ∈ I; x, y ∈ Ω : |f(t, x)− f(t, y)| ≤ L|x− y| (1.23)

It satisfies a local Lipschitz condition if the same holds true for all com-
pact subsets of D.

Example 1.4.4. Let f(t, u) ∈ C1(R × Rd) and let all partial derivatives with
respect to components of u be bounded by

max
t∈R
u∈Rd

1≤i,j≤d

| ∂
∂ui

fj(t, u)| ≤ K.

16

Then, f satisfies the Lipschitz condition (1.23) with L = K. Indeed, by using
Taylor expansion, we see that

fj(t, u)− fj(t, v) =

∫ 1

0

d

ds
fj
(
t, u+ s(v − u)

)
ds

=

∫ 1

0

d∑
i=1

(ui − vi)∂ifj
(
t, u+ s(v − u)

)
ds.

It is an easy conclusion that

|f(t, u)− f(t, v)| ≤ K|u− v|.

1.4.5 Theorem (Stability): Let f(t, u) and g(t, u) be two continuous
functions on a cylinder D = I × Ω where the interval I contains t0 and
Ω is a convex set in Rd. Furthermore, let f admit a Lipschitz condition
with constant L on D. Let u and v be solutions to the IVP

u′ = f(t, u) ∀t ∈ I, u(t0) = u0, (1.24)
v′ = g(t, v) ∀t ∈ I, v(t0) = v0. (1.25)

Then, there holds

|u(t)− v(t)| ≤ eL|t−t0|
[
|u0 − v0|+

∫ t

t0

max
x∈Ω
|f(s, x)− g(s, x)|ds

]
.

(1.26)

Proof. Both u(t) and v(t) solve their respective Volterra integral equations.
Taking the difference, we obtain

u(t)− v(t) = u0 − v0 +

∫ t

t0

[
f(s, u(s))− g(s, v(s))

]
ds

= u0 − v0 +

∫ t

t0

[
f(s, u(t))− f(s, v(s))

]
ds+

∫ t

t0

[
f(s, v(t))− g(s, v(s))

]
ds.

Thus, its norm admits the integral inequality

|u(t)− v(t)| ≤ |u0 − v0|+
∫ t

t0

|f(s, u(t))− f(s, v(s))|ds+

∫ t

t0

|f(s, v(t))− g(s, v(s))|ds

≤ |u0 − v0|+
∫ t

t0

max
x∈Ω
|f(s, x)− g(s, x)|ds︸ ︷︷ ︸
b(t)

+

∫ t

t0

L|u(s)− v(s)|ds.

This inequality is in the form of the assumption in Grönwall’s lemma, and its
application yields the stability result.

17

1.4.6 Theorem (Picard-Lindelöf): Let f(t, y) be continuous on a
cylinder

D = {(t, y) ∈ R× Rd| |t− t0| ≤ a, |y − u0| ≤ b}.

Let f be bounded such that there is a constantM = maxD|f | and satisfy
the Lipschitz condition (1.23) with constant L on D. Then the IVP

u′ = f(t, u)

u(t0) = u0

is uniquely solvable on the interval I = [t0 − T, t0 + T] where T =
min{a, bM }.

Proof. First, we assume for simplicity t0 = 0 or we transform the problem
accordingly. Abbreviate I = [−T, T] and

Ω =
{
x ∈ Rd

∣∣|x− u0| ≤ b
}
.

We introduce the operator F (u) which is defined through the Volterra integral
equation (1.12) as

F (u)(t) = u0 +

t∫
0

f(s, u(s)) ds. (1.27)

Obviously u is a solution of the Volterra integral equation (1.12) if and only
if u is a fixed point of F i.e., u = Fu. We can obtain such a fixed-point by
the iteration u(k+1) = F (u(k)) with some initial guess u(0) : I → Ω. From the
boundedness of f , we obtain for t− t0 ≤ T

|u(k+1)(t)− u0| = |
∫ t

t0

f(s, u(k)(s)) ds| ≤
∫ t

t0

|f(s, u(k)(s))|ds ≤ TM ≤ b.

Thus, from u(0) : I → Ω follows u(k) : I → Ω for all k and the iteration is
well-defined.

We now show that F is a contraction under the assumtions of the theorem. We
follow the technique in [Heu86, §117] and choose on the space C(I), which is the
space of the continuous functions on I, the norm

‖u‖e := max
t∈I

e−2Lt|u(t)|.

18

With estimating the difference of operator F applied to two functions:

|F (u)(t)− F (v)(t)| =

∣∣∣∣∣∣u0 − u0 +

t∫
0

(f(s, u(s))− f(s, v(s))) ds

∣∣∣∣∣∣
≤

t∫
0

∣∣f(s, u(s)
)
− f

(
(s, v(s)

)∣∣ ds

≤
t∫

0

L|u(s)− v(s)| e−2Lse2Ls︸ ︷︷ ︸
=1

ds

≤ L‖u− v‖e

t∫
0

e2Ls ds

= L‖u− v‖e
e2Lt − 1

2L

≤ 1

2
e2Lt‖u− v‖e.

It follows

e−2Lt|F (u)(t)− F (v)(t)| ≤ 1

2
‖u− v‖e,

for all t and we observe:

|F (u)(t)− F (v)(t)|e ≤
1

2
‖u− v‖e.

Thus, we have shown that F is a contraction on the space of the continuous
functions with the norm ‖.‖e. Therefore, we can apply the Banach fixed-point
theorem, concluding that F has exactly one fixed-point. This proves the theo-
rem.

Remark 1.4.7. The norm ‖u‖e had been chosen with regard to Grönwall’s
inequality, which was not used in the proof explicitly. It is equivalent to the
norm ‖u‖∞ because e−2Lt is strictly positiv and bounded. On the other hand
one could have performed the proof with some more calculations with respect
to the ordinary Tchebychev distance (maximum norm) ‖u‖∞.

Remark 1.4.8. Currently our solution is restricted to I = [t0−T, t0 +T]. Since
T is chosen in such a way in equation 1.4.6 that the graph of u does not leave
the domain, this extension always ends on the boundary of D. One can now

extend the solution by solving the next IVP
{
u′ = f(t, u)
u(t1) = u1

}
on the interval

I1. This way one obtains a solution on I ∪ I1 ∪ I2 ∪

19

Corollary 1.4.9. Let the function f(t, u) admit the Lipschitz condition on R×
Cd. Then, the IVP has a unique solution on the whole real axis.

Proof. The boundedness was used in order to guarantee that u(t) ∈ Ω for any t.
This is not necessary anymore, if Ω = Cd. Thus, the limitation of the interval I
becomes unnecessary as well. Finally, the fixed point argument does not depend
on boundedness of the set.

20

Chapter 2

Explicit One-Step Methods
and Convergence

2.1 Introduction

Example 2.1.1 (Euler’s method). We begin this section with the method which
serves as prototype for a whole class of schemes which solves an IVP or rather
the Volterra integral equation numerically. Here, as always for problems with
infinite dimensional solution spaces, numerical solution refers to finding an ap-
proximation by applying a discretization method, and studying the error of this
method.

Consider the following problem: given an IVP of the form (1.11), calculate the
value u(T) at a later point in time T .

To this end, we note first of all that for an IVP at the initial point 0, not only
the function value u(0) = u0 is known, but also the derivative u′(0) = f(0, u0).
Thus we are capable to replace the solution u(t) in blue by a straight line
y(t) in red, which we can see on the left of Figure 2.1. The figure suggests
that in general the accuracy of this method may not be very good. The first
improvement is that we do not draw the line through the whole interval from
0 to T . Instead, we insert intermediate points and apply the method to each
subinterval, where we use the result of a previous interval as the initial point
for the next subinterval. As a result one obtains a chain of straight lines and
the so-called Euler method.

21

t T t T

Figure 2.1: Derivation of the Euler method. Left: replacement of the solution
of the IVP by a line with slope and initial point given by the IVP. Right: Euler
method with three subintervals.

2.1.2 Definition: On a time interval I = [0, T], we define a partition-
ing in n subintervals, also known as time steps. Here we choose the
following notation:

I

0 T

I1 I2 Ik In−1 In

t0 t1 t2 tk−1 tk tn−2 tn−1 tn = T

The time steps Ik = [tk−1, tk] have the step size hk = tk − tk−1. A
partitioning in n time steps implies tn = T . The term k-th time step is
used for both the interval Ik and for the point in time tk, but it should
always be clear through context which one is meant.
Very often, we will consider evenly spaced time steps, in which case we
denote the step size by h and hk = h for all k.

Definition 2.1.3. In the following chapters we will regularly compare the so-
lution of an IVP with the results of discretization methods. Therefore, we
introduce the following convention for notations and symbols.

The solution of the IVP is called the exact or continuous solution. The
term “continuous” indicates here the solution of the non-discretized problem.
Its symbol is in general u and we set as abbreviation

uk = u(tk).

If u is vector-valued we also use the alternative superscript u(k) and u(k)
i for a

entry of the vector u(tk).

In general we write the discrete solution with the symbol y. We write yk or
y(k) for the value of the discrete solution at the point in time tk. In contrast to

22

the continuous solution, y only defined at discrete time steps, unless for special
methods discussed later.

2.1.4 Definition (Explicit one-step method): An explicit one-
step method is a method which, given u0 at t0 = 0 computes a sequence
of approximations y1 . . . , yn to the solution of an IVP in the time steps
t1, . . . , tn using an update formula of the forma

yk = yk−1 + hkFhk(tk−1, yk−1). (2.1)

The function F ()hk is called increment function. We will often omit
the index hk on Fhk() because it is clear that the method is always
applied to time intervals.
The method is called one-step method because the value yk explicitly
depends only of the values yk−1 and f(tk−1, yk−1), not on previous values.

aThe adjective ‘explicit’ is here in contrast to ‘implicit’ one-step methods, where
the increment function depends on yk and equation (2.1) must be solved for yk.

Remark 2.1.5. For one-step methods every step is per definitionem similar.
Therefore, it is sufficient to consider the first step only. Hence, we will define
and analyze methods by stating the dependence of y1 on y0 which then can be
transferred to the general step from yn−1 to yn. The general one-step method
above then reduces to

y1 = y0 + hF (t0, y0).

This implies that the values yk with k ≥ 2 are computed through formula (2.1)
with the respective hk and the same increment function.

23

2.1.6 Example: Given the IVP

u′ = u, u(0) = 1,

the solution is u(t) = et. The Euler method reads

y1 = y0 + hy0.

The results for h = 1 and h = 1/2 are:

exact h = 1 h = 1/2
t = 0 1 y0 1 y0 1
t = 1 2.71828 y1 2 0.718 y2 2.25 0.468
t = 2 7.38906 y2 4 3.389 y4 5.0625 2.236
t = k 2.71828k yk 2k y2k 2.25k

We note that the error is growing in time. The approximation of the
solution can be improved by shrinking h from 1 to 1/2. The goal of error
analysis will be establishing these dependencies.

2.2 Error analysis

Remark 2.2.1. In Figure 2.1, we observe that the error consists of two parts
at a given time tk+1. First, an error on the interval Ik due to replacing the
differential equation by the discrete method. Second, we have to add the error
which results from the fact that our initial value yk is already not exact due to
previous errors. This situation is displayed in Figure 2.2. After one time step,
a local error has appeared. In the second time step, we already start with an
erroneous initial value. Therefore, we split the error into the local error and an
accumulated error. The local error compares continuous and discrete solutions
on a single interval with the same initial value. In the analysis, we will have the
options of using the exact (right figure) or the approximated initial value (left
figure).

24

t

y

u

loc 1

loc 2

acc

t

y

u

loc 1

acc

loc 2

Figure 2.2: Local and accumulated errors. Exact solution in black, the Euler
method in red. On the left, in blue the exact solution of an IVP on the second
interval with initial value y1. On the right, in purple the second step of the
Euler method, but with exact initial value u1.

2.2.2 Definition: Let u be a solution of the differential equation u′ =
f(t, u) on the interval In = [tn−1, tn]. Then, the local error of a discrete
method F is the difference between the solution un of the differential
equation at tn and the result of one time step (2.1) with this method
with exact initial value:

ηn = ηn(u) = un −
[
un−1 + hnFhn(tn−1, un−1)

]
. (2.2)

The truncation error is the quotient of the local error and hn:

τn = τn(u) =
un − un−1

hn
− Fhn(tn−1, un−1). (2.3)

The one-step method Fh(t, y) is consistent of order p with the ODE,
if there is a constant c independent of h such that for h→ 0:

max
n
|τn| ≤ chp (2.4)

Example 2.2.3 (Euler method). To find out the order of consistency of the
Euler method, we consider the Taylor expansion of the solution at the point
tn−1:

u(tn) = u(tn−1) + hnu
′(tn−1) +

1

2
h2
nu
′′(ζ)

25

As a result the truncation error reduces to:

τn =
un − un−1

hn
− F (h; tn−1, u(tn−1))

=
un−1 + hnf(tn−1, un−1) + 1

2h
2
nu
′′(ζ)− un−1

hn
− f(tn−1;un−1)

=
1

2
hnu

′′(ζ)

Under the assumption that f ∈ C1 on a compact set around the graph of u,
this term is bounded, yielding.

|τn| ≤
hn
2

max
ζ∈In
|u′′(ζ)| = hn

2
max
ζ∈In

∣∣∂xf(ζ, u(ζ)) + ∂uf(ζ, u(ζ))f(ζ, u(ζ))
∣∣

Here, we enter the assumption that f is sufficiently smooth to conclude that the
Euler method is consistent of order 1.

2.2.4 Lemma (Discrete Grönwall inequality): Let (wn), (an) and
(bn) be non-negative sequences of real numbers. Let bn be monotonically
nondecreasing. Then, if

w0 ≤ b0 and ∀n ≥ 1 : wn ≤
n−1∑
k=0

akwk + bn, (2.5)

there holds

wn ≤ exp

(
n−1∑
k=1

ak

)
bn. (2.6)

Proof. Define the functions w(t), a(t), and b(t) such that for k ≥ 1 and t ∈
[k − 1, k) there holds

w(t) = w(tk−1), a(t) = b(tk−1), b(t) = b(tk−1).

These functions are bounded and piecewise continuous on any finite interval.
Thus, they are integrable on [0, n]. Therefore, the continuous Grönwall inequal-
ity of Lemma 1.3.8 applies and proves the result.

26

2.2.5 Theorem (Discrete stability): If F (t, y) is Lipschitz continuous
in y for any t = tk, k < n, with constant Lh, then the one-step method
is discretely stable, i. e. for arbitrary sequences (yn) and (zn), there
holds: if ηk(y) and ηk(z) are both bounded independent of the sequences
(yn) and (zn), then

|yn − zn| ≤ eLh(tn−t0)

(
|y0 − z0|+

n∑
k=1

|ηk(y)− ηk(z)|

)

Proof. Subtracting the equations

ηk(y) = yk − yk−1 − Fhk(tk−1, yk−1),

ηk(y) = zk − zk−1 − Fhk(tk−1, zk−1),

we obtain

yk − zk = yk−1 − zk−1 + ηk(y)− ηk(z)

+ hk
(
Fhk(tk−1, yk−1)− Fhk(tk−1, zk−1)

)
.

Recursive application yields

|yn − zn| ≤ |y0 − z0|+
n∑
k=1

|ηk(y)− ηk(z)|+
n∑
k=1

Lhhk|yk − zk|.

The estimate now follows from the discrete Grönwall inequality in Lemma 2.2.4.

2.2.6 Corollary (One-step methods with finite precision): Let the
one-step method F be run on a computer, yielding a sequence (zn), such
that each time step is executed in finite precision arithmetic. Let (yn)
be the mathematically correct solution of the one-step method. Then,
the difference equation (2.1) is fulfilled only up to machine accuracy εm:

y0 − z0 ≈ εm
|ηk(y)− ηk(z)| = |ηk(z)| ≈ εm|zk|.

Then, the error between the true solution of the one-step method (yn)
and the computed solution is bounded by

|yn − zn| ≤ eLh(tn−t0)nεm max
k
|zk|.

27

2.2.7 Theorem (Convergence of one-step methods): Let the one-
step method F (., .) be consistent of order p and discretely stable, that is,
F (., .) is Lipschitz continuous in its second argument. Let f(t, u) ∈ Cp.
Furthermore, let be y0 = u0. Let h = maxhn and let there be a positive
number γ such that minhn = γh. Then, the method converges with
order p and there holds for

|un − yn| ≤ ceLh(tn−t0)hp, (2.7)

where the constant c is independent of h.

Proof. Again we use the discrete stability theorem: with the definition of the
order of the method, we obtain

|ηk(u)− ηk(y)| = |ηk(u)| ≤ chp+1, (2.8)

where c depends on the derivatives of u (and thus of f), but not on uk−yk. On
the other hand, we have

n ≤ tn − t0
minhn

≤ tn − t0
γh

.

Thus, we obtain by summing up (2.8) over all n

|un − yn| ≤ eLh(tn−t0)
n∑
k=1

hp+1
k ≤ ceLh(tn−t0)hp.

Corollary 2.2.8. The Euler method converges of first order.

2.3 Runge-Kutta methods

2.3.1. We are searching for methods which approximate the solution to an IVP
numerically. In fact we are not solving the IVP, but the Volterra integral equa-
tion (1.12). Hence we can consider solving differential equations as a quadrature
problem; with the difficulty that the function, which we integrate, is not known.
This consideration leads to a class of methods for IVP, the Runge-Kutta meth-
ods.

28

2.3.2 Definition: An explicit Runge-Kutta method (ERK) is a
one-step method with the representation

gi = y0 + h

i−1∑
j=1

aijkj i = 1, . . . , s (2.9a)

ki = f (hci, gi) i = 1, . . . , s (2.9b)

y1 = y0 + h

s∑
i=1

biki (2.9c)

In this method the values hci are the quadrature points on the inter-
val [0, h]. The values ki are approximations to function values of the
integrand in these points and the values gi constitute approximations
to the solution u(hci) in the quadrature points. This method uses s
intermediate values and is thus called an s-stage method.

Remark 2.3.3. Pursuant to remark 2.1.5 we present the formula for the calcu-
lation of y1 from y0 on the interval from t0 = 0 to t1 = h. The formula for a later
time step k is obtained by replacing y0 and t0 = 0 by yk and tk, respectively to
obtain yk+1.

Remark 2.3.4. The intermediate values gi will not be saved separately in typi-
cal implementations, because it is possible to execute the method with the values
ki alone. Nevertheless, the values gi are useful for highlighting the structure of
the method.

2.3.5 Definition (Butcher tableau): It is customary to write Runge-
Kutta methods in the form of a Butcher tableau, containing only the
coefficients of equation (2.9) in the following matrix form:

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

(2.10)

Remark 2.3.6. The first row of the tableau is to read in such a manner, that
g1 = y0 and k1 is computed directly by f(t0, y0). The coefficients a1j and c0 do
not appear in formulas (2.9a) and (2.9b) (or are considered zero).

The further rows indicate the rules for the computation of the further values
ki in each case according to the formulas (2.9a) and (2.9b). The the method

29

is explicit since the computation of ki only involves coefficients with index less
than i.

The last row below the line is then the short form of formula (2.9c) and lists
quadrature weights.

We see, that the coefficients aij form the strict lower triangle of a square s× s-
matrix A. Therefore, in order to simplify the summation bounds, we implicitly
complete this matrix with values aij = 0 for j ≥ i.This way, the sum in (2.9a)
can be taken from 1 to s, independent of i. We will also associate to an s-stage
method the vector b = (b1, . . . , bs)

T .

Example 2.3.7. The Euler method Euler method has the Butcher tableau:

0
1

That leads to the already known formula:

y1 = y0 + hf(t0, y0)

The values b1 = 1 and c1 = 0 indicate that this is a quadrature rule with a
single point at the left end of the interval. Such a rule is exact for constant
polynomials and thus of order 1.

2.3.8 Example (Two-stage methods): The modified Euler
method is a variation of the Euler method of the following form:

k1 = f(t0, y0)

k2 = f(t0 +
1

2
h, y0 + h

1

2
k1)

y1 = y0 + hk2

0
1
2

1
2

0 1

The so-called Heun method of order 2 is characterized through the
equation

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h(
1

2
k1 +

1

2
k2)

0
1 1

1
2

1
2

Remark 2.3.9. The modified Euler method uses an approximation to the value
of f(h/2, u(h/2)) in its quadrature, corresponding to the midpoint quadrature
rule. The Heun method is constructed analogous to the trapezoidal rule. Both
quadrature rules are of second order, and so are these one-step methods. Both
methods were discussed by Runge in his article of 1895 [Run95].

30

2.3.10 Lemma: The Heun method and the modified Euler method are
consistent of second ordera.

aHere and in the following proofs of consistency order, we will always assume that
all necessary derivatives of f exist and are bounded. We say “f is sufficiently smooth”.

Proof. The proof uses Taylor expansion of the continuous solution u and the dis-
crete solution y around t0 with respect to h. First, abbreviating ft = ∂tf(t0, u0)
and fu = ∂uf(t0, u0) and so forth1 and replacing u′(t0) = f(t0, u0) = f :

u1 = u(t0 + h) = u0 + hf(t0, u0) +
h2

2

(
ft + fuf

)
+
h3

6

(
ftt + 2ftuf + fuuf

2 + fuft + f2
uf
)

+ (2.11)

For the discrete solution of the modified Euler step on the other hand, there
holds

y1 = u0 + hf

(
t0 +

h

2
, u0 +

h

2
f(t0, u0)

)
= u0 + hf(t0, u0) +

h2

2

(
ft + fuf

)
+
h3

8

(
ftt + 2ftuf + fuuf

2 + fuft + f2
uf
)

+

Thus, |u1 − y1| = O(h3) and the method is of second order. The proof for the
Heun method is left as an exercise.

2.3.11 Example: The three stage Runge-Kutta method is

k1 = f(t0, y0)

k2 = f(t0 +
1

2
h, y0 +

1

2
hk1)

k3 = f(t0 + h, y0 − hk1 + 2hk2)

yn+1 = y0 + h(
1

6
k1 +

4

6
k2 +

1

6
k3)

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

This method is obviously based on the Simpson rule.

Remark 2.3.12. Computations become tedious very fast, in part due to the
sum of partial derivatives of f(t, u). This can be simplified by considering

1Note that fu, fuu and so on are tensors of increasing rank.

31

Runge-Kutta methods for the autonomized ODE (see Definition 1.2.6)(
u′

t′

)
=

(
f(t, u)

1

)
.

Then,the Runge-Kutta method (2.9) simplifies to

gi = y0 +

i−1∑
j=1

aijhf(gj), i = 1, . . . , s

y1 = y0 +

s∑
j=1

bjhf(gj).

(2.12)

2.3.13 Lemma: An ERK is invariant under autonomization (or in short,
autonomizable), if and only if

ci =

i−1∑
j=1

aij , i = 1, . . . , s. (2.13)

Proof. Observing the last component of the vector u in the previous remark and
the method applied to it yields the condition.

2.3.14 Lemma: An autonomizable ERK with s stages is consistent of
third order, if and only if the following conditions are met:

b1 + · · ·+ bs = 1, (2.14a)
b1c1 + · · ·+ bscs = 1/2, (2.14b)

b1c
2
1 + · · ·+ bsc

2
s = 1/3, (2.14c)∑

i,j
biaijcj = 1/6. (2.14d)

It is consistent of fourth order, if and only if additionally

b1c
3
1 + · · ·+ bsc

3
s = 1/4, (2.14e)∑

i,j
biaijc

2
j = 1/12, (2.14f)∑

i,j,k
biaijajkck = 1/24, (2.14g)∑
i,j
biciaijcj = 1/8. (2.14h)

32

Remark 2.3.15. We can rephrase these conditions, such that an ERK is of
order k if the quadrature with support points ci and corresponding weights bi
is exact for polynomials of degree k − 1:

s∑
i=1

bip(ci) =

∫ 1

0

p(t) dt, ∀p ∈ Pk−1.

Furthermore, for k ≥ 3

∑
ij

biaijp(cj) =

∫ 1

0

∫ t

0

p(s) dsdt, ∀p ∈ Pk−2.

Additionally, for k ≥ 4

∑
ijk

biaijajkp(ck) =

∫ 1

0

∫ t

0

∫ s

0

p(r) dr dsdt, ∀p ∈ Pk−3,

∑
ij

bip(ci)aijq(cj) =

∫ 1

0

p(t)

∫ t

0

q(s) dsdt ∀p ∈ Pk1 , q ∈ Pk2 , k1 + k2 = k − 2.

2.3.16 Lemma: The Taylor expansion of a single component of u1 =
u(h) with respect to h is

(u1)n = (u0)n

+ hfn

+
h2

2

∑
λ

∂λfnfλ

+
h3

6

∑
λ,µ

[
∂λµfnfλfµ + ∂λfn∂µfλfµ

]
+
h4

24

∑
λ,µ,ν

[
∂λµνfnfλfµfν + 3∂λµfn∂νfλfµfν

+ ∂λfn∂µνfλfµfν + ∂λfn∂µfλ∂νfµfν]

+ . . .

(2.15)

where we have omitted the arguments f = f(u(t0)) and all sums are
taken from 1 to d.

Proof. Taking derivatives of u and replacing every occurrence of u′ by f(u). For

33

scalar valued functions, we clarify this at the example

u′(t) = f(u(t))

u′′(t) =
(
u′(t)

)′
= f(u(t))′ = f ′(u(t))u′(t)

= f ′(u(t))f(u(t))

u(3) =
(
u′′(t)

)′
=
(
f ′(u(t))f(u(t))

)′
= f ′′(u(t))u′(t)f(u(t)) + f ′(u(t))f ′(u(t))u′(t)

= f ′′(u(t))f(u(t))2 + f ′(u(t))2f(u(t)).

After the concept is clear, we have to keep track of the vector indices and
compute with brute force. It may be worth noting, that in the 4th order term,
we used the fact that we can swap summation indices and get∑

λ,µ,ν

∂λµfn∂νfλfµfν =
∑
λ,µ,ν

∂λµfn∂νfµfλfν =
∑
λ,µ,ν

∂λνfn∂µfλfµfν .

2.3.17 Lemma: The Taylor expansion of y1 with respect to h is

(y1)n = (u0)n

+ h

s∑
j=1

bifn

+
h2

2

∑
λ

[
2
∑
i

bici∂λfnfλ

]

+
h3

6

∑
λ,µ

3
∑
i

bic
2
i ∂λµfnfλfµ + 6

∑
i,j

biaijcj∂λfn∂µfλfµ


+
h4

24

∑
λ,µ,ν

6
∑
i

bic
3
i ∂λµνfnfλfµfν + 3

∑
i,j

biciaijcj∂λµfn∂mfλfµfν

+2
∑
i,j

biaijc
2
j∂λfn∂µνfλfµfν +

∑
i,j,k

biaijajkck∂λfn∂µfλ∂νfµfν

 .
(2.16)

Proof. We begin with the observation that for an arbitrary function ϕ holds

dq

dhq
(
hϕ(h)

)∣∣∣∣
h=0

=

[
h
dq

dhq
ϕ(h) + qh′

dq−1

dhq−1
ϕ+

(
q

2

)
h′′ . . .

]
h=0

= q
dq−1

dhq−1
ϕ.

34

Next, we use (2.9c) to obtain

y(h) = u0,

y(q)(h)
∣∣
h=0

= q

s∑
j=1

bj
dq−1

dhq−1
f(gj)

∣∣∣∣
h=0

.

We observe gi(0) = u0. Further, from (2.9a), we obtain

gi(h)
∣∣
h=0

= u0,

g
(q)
i;n(h)

∣∣
h=0

= q

i−1∑
j=1

aij
dq−1

dhq−1
fn(gj)

∣∣∣∣
h=0

.

Here, gi;n refers to the component k of vector gi. Finally, we need

d

dh
fn(gi(h))

∣∣
h=0

=
∑
λ

∂λfng
′
i;λ

d2

dh2
fn(gi(h))

∣∣
h=0

=
∑
λ,µ

∂λµfng
′
i;λg
′
i;µ +

∑
k

∂λfng
′′
i;λ.

Summarizing, we obtain

y′n =

s∑
j=1

bjfn(gj)

y′′n = 2

s∑
j=1

bj
d

dh
fn(gj) =

s∑
j=1

j−1∑
k=1

bjajk
∑
λ

∂λfnfλ

y′′′n = 3

s∑
j=1

bj
d2

dh2
fn(gj)

= 3

s∑
j=1

bj

∑
λ,µ

∂λµfng
′
j;λg

′
j;µ +

∑
λ

∂λfng
′′
j;λ


= 3

s∑
j=1

bj

∑
λ,µ

∂λµfn

j−1∑
k=1

ajkfλ

j−1∑
k=1

ajkfµ +
∑
λ

∂λfn2

j−1∑
k=1

ajk

k−1∑
l=1

akl
∑
µ

∂µfλfµ



Proof of Lemma 2.3.14. The proof utilizes Taylor expansion of u1 and y1 pro-
vided in Lemmas 2.3.16 and 2.3.17, respectively. Once we have computed these
expansions, we compare coefficients in front of equal derivatives in order to get
the result.

35

Remark 2.3.18. Butcher introduced a graph theoretical method for order con-
ditions based on trees. While this simplifies the process of deriving these con-
ditions for higher order methods considerably, it is beyond the scope of this
course.

2.3.19 Example (The classical Runge-Kutta method of 4th or-
der):

k1 = f(tn, yn)

k2 = f(tn +
1

2
hn, yn +

1

2
hnk1)

k3 = f(tn +
1

2
hn, yn +

1

2
hnk2)

k4 = f(tn + hn, yn + hnk3)

yn+1 = yn + hn(
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4)

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

This formula is based on the Simpson rule as well, but it uses two ap-
proximations for the value in the center point. It is of fourth order.

Remark 2.3.20 (Order conditions and quadrature). The order conditions de-
rived by excessive Taylor expansion have a very natural interpretation through
the analysis of quadrature formulas for the Volterra integral equation, where
(hci) are the quadrature points and the other values are quadrature weights.
First, we observe that∑

i

bif(gi) approximates
1

h

∫ 1

0

f(u(hs) ds.

In this view, conditions (2.14a)–(2.14c) and (2.14e) state that the formula∑
i bip(ci) is an exact integral for polynomials of degree up to 3. In a pre-

vious semester, we have made use of this property to prove that the formula is
of 4th order.

Equally we deduce from formula (2.9a) for gi that∑
j

aijf(gj) approximates
1

h

∫ ci

0

f(u(hs) ds.

The condition (2.13) that the method be autonomizable states nothing but
that this be exact for constant functions. For higher order, the accuracy of
the value of gi only implicitly enters the accuracy of the Runge-Kutta method
by integrating this value again. Thus, we actually look at approximations of
integrals of the form ∫ 1

0

ϕ(s)

∫ s

0

ψ(r) dr ds.

36

Condition (2.14d) for 3rd order states, that this condition must be true for
linear polynomials ψ(r) and constant ϕ(s), thus, after the interior integration
again a polynomial of second order. Equally, conditions (2.14h) and (2.14f) state
this for linear polynomials ψ(r) with linear ϕ(s) and for quadratic polynomials
ψ(r) with constant ϕ(s), respectively. Finally, condition (2.14g) states that the
quadrature has to be exact for any linear polynomial ϕ(τ) in∫ 1

0

∫ s

0

∫ r

0

ϕ(τ) dτ dr ds.

Remark 2.3.21 (Butcher barriers). The maximal order of an explicit Runge-
Kutta method is limited through the number of stages, or vice versa, a minimum
number of stages is required for a certain order. The Butcher barriers state
that in order to achieve order p one requires s stages, where p and s relate as
follows:

p 1 2 3 4 5 6 7 8 9 10
cond. 1 2 4 8 17 37 85 200 486 1205

s p p p p p+1 p+1 p+2 p+3 ? 17?

These order bounds refer to systems of differential equations. For a simple
equation they may be better. For instance, there exists a five-stage method
which solves the one dimensional IVP with order 5.

For p = 10 there is only known a method with r = 17 until now. It is possible
that there exists a method that needs less stages, because currently no proof for
a minimal number of stages is available.

2.3.22 Lemma: Let f(t, u) admit the uniform Lipschitz condition.
Then, every autonomizable ERK which is consistent of order one ad-
mits a uniform Lipschitz condition.

Proof. We observe that the increment function is

F (0, y) =

s∑
j=1

bjf(hci, gi(y)), (2.17)

with gi(y) defined recursively by

gi(y) = y + h

i−1∑
j=1

aijf(hcj , gj(y)).

37

Let L be the Lipschitz constant of f . Let di = |gi(x)− gi(y)|/|x− y|. We have

d1 = 1

d2 = |x− y + ha21

(
f
(
hc1, g1(x)

)
− f

(
c1, g1(x)

))
|/|x− y|

≤ (1 + ha21L) = (1 + hc1L)

d3 ≤
(

1 + hL
(
a31 + a32(1 + ha21L)

))
≤
(
1 + hLc2(1 + hc1L)

)
d4 ≤

(
1 + hLc3

(
1 + hLc2(1 + hLc1)

))
ds ≤

(
1 + hLcs

(
1 + . . . (1 + hLc1) . . .

))
.

Since ci ≤ 1, the factor is bounded by ds ≤ (1 + hL)s−1. Moreover, if hL ≤ 1,
we realize that

ds =
(

1 + hL
(
1 + . . . (1 + hL) . . .

))
≤ s.

Finally, we enter this result into (2.17) to obtain

|F (0, x)− F (0, y)| ≤
s∑
j=1

bjLdj |x− y|

≤ dsL|x− y|.

Thus, the increment function F admits a Lipschitz condition with constant
Lh = L(1 + hL)s−1 for general step size h and Lh = sL for h ≤ 1/L.

2.4 Estimates of the local error and time step
control

2.4.1. In the preceding paragraphs, we have used a crude a priori estimate of
the local error based on high order derivatives of the right hand side f(t, u).
In the case of a complex nonlinear system, such an estimate is bound to be
inefficient, since it involves global bounds on the derivatives. Obviously, the
local error cannot be computed exactly either, because that would require or
imply the knowledge of the exact solution.

In this section, we discuss two methods which allow an estimate of the truncation
error from computed solutions. These estimates are local in nature and therefore
usually much sharper. Thus, they can be used to control the step size, which in
turn gives good control over the balance of accuracy and effort. Nevertheless,
it should be pointed out that in these estimates there is an implicit assumption

38

that the true solution u is sufficiently regular and the step size is sufficiently
small, such that the local error already follows the theoretically predicted order.

Given an estimate for the local error, we can devise an algorithm step size
control, which controls the local error and thus in a certain way the global
error.

Algorithm 2.4.2 (Adaptive step size control). Let there be an estimate for
the local error based on |y1− ŷ1| . Then, the following algorithm can be used to
guarantee that the local error of a one-step method remains below a threshold
ε in every time step:

1. Given yk−1, compute yk and ŷk with time step hk.

2. Compute

hopt = h

(
ε

yk − ŷk

) 1
p+1

. (2.18)

3. If hopt < hk the time step is rejected: let hk = hopt and recompute yk and
ŷk.

4. If the time step was accepted, let hk+1 = hopt.

(a) If tk + hk+1 > tn, let hk+1 = tn − tk.

Increase k by one and proceed with the first step.

Remark 2.4.3. It might happen, that the value tk is just below tn with a
difference close to machine accuracy. As a result, the next time step with
hk+1 ≈ εm would suffer from round-off errors. Therefore, it is advisable to
avoid this situation by expanding the last time step, if tn − tk ≤ chk+1 where c
is a moderate constant of size around 1.1.

Remark 2.4.4. This algorithm controls and equilibrates the local error. Nev-
ertheless, the global estimate still retains the exponential term. The error es-
timation techniques in this section are thus not optimal controlling the global
error, which involves considerably more effort and will be discussed in a later
course.

2.4.1 Extrapolation methods

2.4.5. Here, we estimate the local error by a method called Richardson extrap-
olation. It is based on computing two approximations with the same method,
but different step size, say an approximation y2 with two steps of size h and an
approximation ŷ2 with one step of size 2h.

39

2.4.6 Theorem: Let y2 = y(t2) be the result of a Runge-Kutta method
of order p after 2 steps with step size h and let ŷ2 = ŷ(t2) be the result
after one step of step size 2h. Then, the error admits the estimate

u2 − y2 =
y2 − ŷ2

2p − 1
+O(hp+2) (2.19)

Moreover, we obtain an approximation

ỹ2 = y2 +
y2 − ŷ2

2p − 1
, (2.20)

such that

u(t2)− ỹ2 = O(hp+2). (2.21)

Proof. For the proof we need a refined version of the local error estimates as
well as the global error estimate in Theorem (2.2.7) which can be obtained by
adding one more step of Taylor expansion. Then, we get for the local error of a
method of order p estimates of the form

e1 = u1 − y1 = Chp+1 +O(hp+2), (2.22)

with a constant (vector) C with not necessarily positive entries. In the same
way, we refine the estimate for error propagation from basic Lipschitz continuity
to

e2;acc =

(
I + h

∂f

∂y
+O(h2)

)(
u1 − y1). (2.23)

The local error on the second interval is of the same structure as (2.22), but on
the interval starting at t1 with initial value y1 = y0 +O(h).

Thus, we obtain for the error after two steps of size h:

u2 − y2 =
(
I +O(h)

)
Chp+1︸ ︷︷ ︸

local 2

+
(
C +O(h)

)
hp+1 +O(hp+2)

= 2Chp+2 +O(hp+2). (2.24)

We compare this to a single step for ŷ with

u2 − ŷ2 = C(2h)p+1 +O(hp+2). (2.25)

Subtracting equations (2.24) and (2.25), we obtain

y2 − ŷ2 =
(
2− 2p+1

)
Chp+1 +O(hp+2),

40

such that

Chp+1 =
y2 − ŷ2

2p+1 − 2
+O(hp+2). (2.26)

We enter this result into (2.24) to conclude

u2 − y2 =
y2 − ŷ2

2p − 1
+O(hp+2). (2.27)

Adding y2 on both sides, we see that

ỹ2 = y2 +
y2 − ŷ2

2p − 1
(2.28)

approximates u2 of order O(hp+2) and thus one order better than y2.

Remark 2.4.7. Formula (2.19) can be evaluated after computation of y2 and
ŷ2 in order to obtain an estimate for the local error of y2. This estimate can be
used to control the step size control according to the algorithm above. We do
not have an estimate for the error of ỹ. Nevertheless, we expect its values to be
more accurate, such that we should use ỹ as approximation and initial value for
the next time step.

2.4.2 Embedded Runge-Kutta methods

Instead of estimating the local error by doubling the step size, embedded Runge-
Kutta methods use two methods of different order to achieve the same effect.
The key to efficiency is here, that the computed stages gi are the same for both
methods, and only the quadrature weights bi differ.

Definition 2.4.8 (Embedded Runge-Kutta methods). An embedded s-stage
Runge-Kutta method with orders of consistence p and p̂ computes two solutions
y and ŷ with the same function evaluations. For this purpose we will first
compute contributions gi and ki for i = 1, . . . , s as in the normal Runge-Kutta
method of stage s. The function values at the end of the time step result as
follows

y1 = y0 + h
∑

biki

ŷ1 = y0 + h
∑

b̂iki.
(2.29)

The methods for y and ŷ are consistent of order p and p̂, respectively. We let
p̂ < p, for example p̂ = p− 1.

This can be achieved by e.g. using the same mathod twice and omitting b̂j for
one j ∈ {1, . . . , s}.

41

2.4.9 Definition: The Butcher tableau for the embedded method has
the form:

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs
b̂1 b̂2 · · · b̂s−1 b̂s

Remark 2.4.10. For higher order methods or functions f(t, u) with compli-
cated evaluation, most of the work lies in computation of the stages. Thus, the
additional quadrature for the computation of ŷ is almost for free. Nevertheless,
due to the different orders of approximation, y is much more accurate and we
obtain

u1 − ŷ1 = y1 − ŷ1 +O(hp). (2.30)

Thus, y1− ŷ1 is a good estimate for the local error of ŷ1. This is the error which
is used in step size control below. Similar to Richardson extrapolation above,
we use the more accurate value y1 for further computation, even if we do not
have a computable estimate for its local error.

2.4.11 Definition (Dormand-Prince 45): The embedded Runge-
Kutta method of orders 4 for ŷ and 5 for y due to Dormand and Prince
has the Butcher tableau

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

1 35
384 0 500

1113
125
192

−2187
6784

11
84

y 35
384 0 500

1113
125
192

−2187
6784

11
84 0

ŷ 5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

Remark 2.4.12. The Dormand-Prince method of orders 4 and 5 has become a
standard tool for the integration of IVP. It is the backbone of ode45 in Matlab.

42

2.5 Continuous Runge-Kutta methods

2.5.1. The Runge-Kutta methods discussed so far compute highly accurate
approximations to the solution u(t) in the discrete points (tk)k=1,...,n. Such
approximations are useful, if only the value at the interval end tn = T is needed,
or if the time steps are sufficiently small in order to generate a plot of the solution
history. There are some problems though, where the values in discrete points
are not sufficient:

1. The step size control managed to use very large steps from which for
instance a plot cannot read easily. Thus, we require the solution in the
continuum between two time steps.

2. Accurate approximations inside an interval are required. This may be due
to the fact that we want to measure the length of a period of a periodic
solution, or that the equation contains switches which change discretely
when the solution attains certain values.

In all of these cases, we need an interpolation formula for these intermediate
values. Unfortunately, as the example of the classical Runge-Kutta method
shows, the values gi have questionable value in this business. Therefore, in
order to be better than linear interpolation between yk−1 and yk, we have to
consider formulas, which provide the information for accurate interpolation with
low additional cost.

Definition 2.5.2. A continuous Runge-Kutta method is a method of the same
type as in definition 2.3.2, for which the coefficients bi are replaced by continuous
functions bi(ϑ) on the interval [0, 1]. For this reason the equation (2.9c) is
augmented by

y(t0 + ϑh) = y0 +

s∗∑
i=1

bi(ϑ)ki. (2.31)

Here the stage number s∗ may be higher than s. Then additional intermediate
values ki have to be generated.

Remark 2.5.3. The local error u(t0 + ϑh) − y(t0 + ϑh) is of order p∗ if the
derivative ∂kϑy approximates ∂kϑu with an error of order hp

∗−k+1. Note that the
first derivatives involve the derivatives of gi with respect to h.

For a later time, we observe that the error of the initial value of an interval is
only O(hp). Thus, an optimal continuous formula balancing the global error of
the original method with the local error of the continuous method should be of
order p∗ = p− 1.

Remark 2.5.4. If s∗ > s choose ks+1 = k1 = f(tn, y1) of the next time step.

43

2.5.5 Example: For the classical Runge-Kutta method with 4 stages a
continuous interpolation with s∗ = s is defined by the coefficients

b1(ϑ) = ϑ− 3

2
ϑ2 +

2

3
ϑ3

b2(ϑ) = b3(ϑ) = ϑ2 − 2

3
ϑ3

b4(ϑ) = −1

2
ϑ2 +

2

3
ϑ3.

The error of this method is y(ϑ)− u(ϑ) = O(h3).

2.5.6 Example: A continuous interpolation for the Dormand-Prince
method of orders 4/5 is given by

b1(ϑ) = ϑ2(3− 2ϑ)b1 + ϑ(ϑ− 1)2 − 5 2558722523−31403016ϑ
11282082432 ϑ2(ϑ− 1)2

b2(ϑ) = 0

b3(ϑ) = ϑ2(3− 2ϑ)b3 + 100ϑ2(ϑ− 1)2 882725551−15701508ϑ
327004410799

b4(ϑ) = ϑ2(3− 2ϑ)b4 + 25ϑ2(ϑ− 1)2 443332067−31403016ϑ
1880347072

b5(ϑ) = ϑ2(3− 2ϑ)b5 + 32805ϑ2(ϑ− 1)2 23143187−3489224ϑ
199316789632

b6(ϑ) = ϑ2(3− 2ϑ)b6 + 55ϑ2(ϑ− 1)2 29972135−7076736ϑ
822651844

(no warranty)

Remark 2.5.7. Collocation methods will provide a natural way to obtain con-
tinuous method in the next chapter.

44

Chapter 3

Implicit One-Step Methods
and Long-Term Stability

3.0.1. In the first chapter, we studied methods for the solution of IVP and the
analysis of their convergence with shrinking step size h. We could gain a priori
error estimates from consistency and stability for sufficient small h.

All of these error estimates are based on Grönwall’s inequality. Therefore, they
contain a term of the form eLt which increases fast with increasing length of the
time interval [t0, T]. Thus, the analysis is unsuitable for the study of long-term
integration, since the exponential term will eventually outweigh any term of the
form hp.

On the other hand, for instance our solar system has been moving on stable
orbits for several billion years and we do not observe an exponential increase
of velocities. Thus, there are in fact applications for which the simulation of
long time periods is worthwhile and where exponential growth of the discrete
solution would be extremely disturbing.

This chapter first studies conditions on differential equations with bounded long
term solutions, and then discusses numerical methods mimicking this behavior.

3.1 Monotonic initial value problem

Example 3.1.1. We consider for λ ∈ C the linear initial value problem

u′ = λu

u(0) = 1.
(3.1)

45

Splitting λ = <(λ)+i=(λ) into its real and imaginary part, the (complex valued)
solution to this problem is

u(t) = eλt = e<(λ)t
(
cos(=(λ)t) + i sin(=(λ)t)

)
.

The behavior of u(t) for t→∞ is determined by the real part of λ:

<(λ) < 0 : u(t)→ 0

<(λ) = 0 : |u(t)| = 1

<(λ) > 0 : u(t)→∞
(3.2)

Moreover, the solution is bounded for λ with non-positive real part for all points
in time t.

Remark 3.1.2. Since we deal in the following again and again with eigenvalues
of real-valued matrices, we will always consider complex valued IVP hereafter,
due to the well known fact, that these eigenvalues can be complex.

Remark 3.1.3. Due to Grönwall’s inequality and the stability theorem 1.4.5,
the solution to the IVP above admits the estimate |u(t)| ≤ e|λ|t|u(0)|. This is
seen easily by applying the comparison function v(t) ≡ 0. As soon as λ 6= 0 has
a non-positive real part, this estimate is still correct but very pessimistic and
therefore useless for large t. Since problems with bounded long-term behavior
are quite important in applications, we will have to introduce an improved
notation of stability.

3.1.4 Definition: The function f(t, y) satisfies on its domain D ⊂
R× Cd a one-sided Lipschitz condition if the inequality

<〈f(t, y)− f(t, x), y − x〉 ≤ ν|y − x|2 (3.3)

holds with a constant ν for all (t, x), (t, y) ∈ D. Moreover such a function
is called monotonic if ν = 0, thus

<〈f(t, y)− f(t, x), y − x〉 ≤ 0. (3.4)

An ODE u′ = f(u) is called monotonic if its right hand side F is mono-
tonic.

Remark 3.1.5. The term monotonic from the previous definition is consis-
tent with the term monotonically decreasing, which we know from real-valued
functions. We can see this by observing for y > x(

f(t, y)− f(t, x)
)
(y − x) ≤ 0 ⇔ f(t, y)− f(t, x) < 0.

46

3.1.6 Theorem: Let u(t) and v(t) be two solutions of the equation

u′ = f(t, u), v′ = f(t, v),

with initial values u(t0) = u0 and v(t0) = v0, respectively. Let the
function f be continuous and let the one-sided Lipschitz condition (3.3)
hold. Then we have for t > t0:

|v(t)− u(t)| ≤ eν(t−t0)|v(t0)− u(t0)|. (3.5)

Proof. We consider the auxiliary functionm(t) = |v(t)−u(t)|2 and its derivative

m′(t) = 2<〈v′(t)− u′(t), v(t)− u(t)〉
= 2<

〈
f
(
t, v(t)

)
− f

(
t, u(t)

)
, v(t)− u(t)

〉
≤ 2ν|v(t)− u(t)|2

= 2νm(t).

According to Grönwall’s inequality (lemma 1.3.8 on page 12) we obtain for
t > t0:

m(t) ≤ m(t0)e2ν(t−t0).

Taking the square root yields the stability estimate (3.5).

Remark 3.1.7. Analog to example 3.1.1 on page 45 we obtain from the stability
estimate, that for the difference of two solutions u(t) and v(t) of the differential
equation u′ = f(t, u) we obtain in the limit t→∞:

ν < 0 : |v(t)− u(t)| → 0

ν = 0 : |v(t)− u(t)| ≤ |v(t0)− u(t0)|
(3.6)

3.1.8 Lemma: The linear differential equation u′ = Au with u(t) ∈ Cd
and a diagonalizable matrix function A(t) ∈ Cd×d admits the one-sided
Lipschitz condition (3.3) with the constant

ν = max
i=1,...,d
t∈R

<(λi).

Accordingly, this ODE is monotonic if and only if for all eigenvalues λi
of A(t) there holds

<(λi) ≤ 0. (3.7)

This is the vector-valued form of example 3.1.1.

47

Proof. For the right hand side of the equation we have

<〈A(t)y −A(t)x, y − x〉 ≤ <〈A(t)y −A(t)x, y − x〉
|y − x|

|y − x| ≤ max
i=1,...,d

<(λi)|y − x|.

Hence, we obtain already ν ≤ maxi=1,...,d <(λi). If we now insert for x − y an
eigenvector of eigenvalue λ for which the maximum is accepted, then we obtain
the equality and therefore ν = maxi=1,...,d<(λi).

3.1.1 Stiff initial value problems

Example 3.1.9. We consider the IVP

u′ =

(
−1 0
0 −100

)
u, u(0) =

(
1
1

)
. (3.8)

This has the solution

u(t) =

(
e−t

e−100t

)
.

We see, that the solution has a component which decreases slowly in time with
e−t and a second one, which decreases fast with e−100t. If we apply the Euler
method with step size h to this equation, then we obtain the method step

y(n) = y(n−1) + h

(
−1 0
0 −100

)
y(n−1) =

(
1− h 0

0 1− 100h

)
y(n−1)

with the solution

y(n) =

(
(1− h)n

(1− 100h)n

)
If we are interested in the second solution component, the one which decreases
fast, we choose h to be small, say h < 1/100. Thus, for n→∞ we have yn → 0,
slowly in the first component, fast in the second one, just like the solution u(t)
of the continuous solution. (Recall that for fixed chosen step size h the limits
t→∞ and n→∞ are equal.)

If we are just interested in the first, the slow component, at a time where it has
changed significantly. then a considerably larger step size is appropriate, say
h = 1/10. For this step size the first solution component is still converging to
zero with y(n)

1 = 0.9n. For the second one we have however |y(n)
2 | = |(−9)n| →

∞. Therefore the approximate solution for this step size diverges for n → ∞,
very much in contrast to the behavior of the exact solution u(t)→ 0 for t→∞.

48

Remark 3.1.10. Of course, it would have been possible to ignore the second
component in the previous example. But this is not a simple task in general, due
to the fact that most solution components are coupled through the equation. In
such cases the step size of the Euler method must be chosen to accommodate
the “fast components”. This can lead to significant computational overhead.
Therefore, we define in the following characteristic properties of such problems
and develop to that specially adapted solution methods.

3.1.11 Definition: An initial value problem is called stiff , if it has
the following characteristic properties:

1. The right hand side of the ODE is monotonic, or at least admits a
one-sided Lipschitz condition with a small parameter ν.

2. The time scales on which the different solution components are
evolving differ a lot, or in mathematical terms, the Lipschitz con-
stant L of the right hand side is greater than ν by orders of mag-
nitude.

3. The time scales which are of interest for the application are much
longer than the fastest time scales of the equation. Again in the
language of our parameters: there is a constant c of moderate size,
such that

eLT ≤ ceνT . (3.9)

Remark 3.1.12. Even though we used the term definition, the notion of “stiff-
ness of an IVP” has something vague or even inaccurate about it. In fact that
is due to the very nature of the problems and cannot be fixed. Instead we are
forced to sharpen our understanding by means of a few examples.

Remark 3.1.13. The third condition in the definition of stiffness is rather
rare to find in the literature, but it is in general implicitly assumed by the
discussion for time step methods for stiff IVP. It is important though to realize,
that the methods of the previous chapter do not cause problems computing a
good resolution for the fastest time scales. In this case, eLt will be not too much
greater than eνt.

Example 3.1.14. First of all we will have a look at equation (3.8) in exam-
ple 3.1.9. The first condition of the stiffness definition is fulfilled. The decrease
to 1/e happens at t = 1 and at t = 1/100 for the first and second component,
respectively. Thus, the second condition holds as well.

According to the discussion of example 3.1.9, the third condition depends on
the purpose of the computation. If we want to compute the solution at time
t = 1/100, we would not denote the problem as stiff. As one is interested on the

49

solution at time t = 1, on which the second component with e−100 is already
below typical machine accuracy, the problem is stiff indeed. Here we have seen
that Euler’s method requires disproportionately small time steps.

Remark 3.1.15. The definition of stiffness and the discussion of the examples
reveal that numerical methods are needed, which are not just convergent for
time steps h → 0 but also for fixed step size h, even in the presence of time
scales clearly below h. In this case, methods still have to produce solutions with
correct limit behavior for t→∞.

Example 3.1.16. The implicit Euler method is defined by the one-step
formula

y1 = y0 + hf(t1, y1) ⇔ y1 − hf(t1, y1) = y0. (3.10)

Applied to our example (3.8), we observe

y(n) =

(
1 + h 0

0 1 + 100h

)−1

y(n−1).

This yields the solution

y(n) =

(
1

(1+h)n
1

(1+100h)n ,

)

which converges to zero for n → ∞, independent of h. Thus, although the im-
plicit Euler method requires in general the solution of a nonlinear system in each
step, it allows for much larger time steps than the explicit Euler method,when
applied to a stiff problem.

3.2 A- and B-stability

3.2.1. In this section, we will investigate desirable properties of one-step meth-
ods for stiff IVP (3.11). We will first study linear problems of the form

u′ = Au u(t0) = u0. (3.11)

and the related notion of A-stability in detail From the conditions for stiffness
we derive the following problem characteristics:

1. All eigenvalues of the matrix A lie in the left half-plane of the complex
plane. With (3.2) all solutions are bounded for t→∞.

2. There are eigenvalues close to zero and eigenvalues with a large negative
real part.

50

3. We are interested in time spans which make it necessary, that the product
hλ of a time step and an arbitrary eigenvalue, is allowed to be large.

For this case we now want to derive criteria for the boundedness of the discrete
solution for t → ∞. The important part is not to derive an estimate holding
for h → 0, but one that holds for any value of hλ in the left half-plane of the
complex numbers.

3.2.2 Definition: The stability functionR(z) = R(hλ) is the function
generated by applying the one-step method

y1 = y0 + hFh(t0, y0)

to the linear test problem u′(t) = λu(t). Therefore,

y1 = R(hλ)u0, (3.12)

and
y(n) = R(hλ)nu0. (3.13)

The stability region of a one-step method is the set

S =
{
z ∈ C

∣∣|R(z)| ≤ 1
}
. (3.14)

Example 3.2.3. The stability function of the explicit Euler method is derived
as follows:

y1 = y0 + hλy0 = (1 + hλ)y0

⇒ R(hλ) = 1 + hλ

R(z) = 1 + z

(3.15)

The stability region for the explicit Euler is a circle with radius 1 around the
point (-1,0) in the complex plane (see Figure 3.1)

Example 3.2.4. The stability function of the implicit Euler method is derived
as follows:

y1 = y0 + hf(t1, y1)

y1 = y0 + hλy1

(1− hλ)y1 = y0

⇒ R(hλ) =
1

1− hλ

R(z) =
1

1− z

(3.16)

The stability region for the implicit Euler is the complement of a circle with
radius 1 around the point (1,0) in the complex plane (see Figure 3.1).

51

Figure 3.1: Stability regions of the explicit and implicit Euler methods (blue
stable, red unstable)

3.2.5 Definition (A-stability): A method is called A-stable, if its
stability region contains the left half-plane of C, hence

{z ∈ C|<(z) ≤ 0} ⊂ S (3.17)

3.2.6 Theorem: Let
{
y(k)

}
be the sequence generated by an A-stable

one-step method of step size h for the linear, autonomous IVP

u′ = Au, u(t0) = u0

with a diagonalizable matrix A an initial value y(0) = u0. If additionally
all eigenvalues of A have a non-positive real part, then the sequence
members y(k) are uniformly bounded for all h.

Proof. Let {v`}`=1,...,d be a basis of Cd consisting of eigenvectors of A. Such
a basis exists since A is diagonalizable. Let y0 =

∑d
`=1 α

`v` be the repre-
sentation of y0 in this basis. Furthermore, we introduce the representations
gi =

∑d
`=1 γ

`
i v`. Then, we see that equations of the form

gi = y0 + h

s∑
j=1

aijAgi

52

decouple into

γ`i = α` + h

s∑
j=1

aijλ`γ
`
j .

Similarly, if y1 =
∑d
`=1 η

`v` we have the separation

y1 = y0 + h

s∑
i=1

bigi −→ η` = α` + h

s∑
i=1

biγ
`
i .

Thus, instead of a vector valued problem, the method solves d decoupled scalar
problems, inside and across time steps. But for each of the scalar problems, the
definition of A-stability implies boundedness of the solution, if <(λ`) ≤ 0.

3.2.7 Theorem: No explicit Runge-Kutta method is A-stable.

Proof. We show that for such methods R(z) is a polynomial. Then, the theorem
follows immediately, it is known for polynomials, that the absolute value of its
values goes to infinity, if the absolute value of the argument goes to infinity.

From the equation (2.9b) follows ki = λgi. If we insert that into the equa-
tion (2.9a), we obtain

gi = y0 + h

i−1∑
j=1

aijkj = y0 + hλ

i−1∑
j=1

aijgj .

With g1 = y0 and z = hλ one has

g2 = y0 + a21zy0 = (1 + a21z)y0

g3 = y0 + a32zg1 = y0 + a32z(1 + a21z)y0 = (1 + a32z(1 + a21z))y0.

Therefore one shows easily per induction that kj results as multiplication of a
polynomial of order j − 1 with y0. With formula (2.9c) we have that R(z) is a
polynomial of order s− 1.

Remark 3.2.8. The notion of A-stability is only applicable to linear problems
with diagonalizable matrices. Now we are considering its extension to nonlinear
problems with monotonic right hand sides.

3.2.9 Definition: A one-step method is called B-stable, if for mono-
tonic initial value problems u′ = f(u) with arbitrary initial value y0 and
z0 there holds:

|y1 − z1| ≤ |y0 − z0| (3.18)

independent of the time step size h.

53

3.2.10 Theorem: Let be
{
y(k)

}
the sequence generated by a B-stable

method for the IVP

u′ = f(u), u(t0) = u0

with initial values y(0) = u0. If the right hand side f is monotonic, then
the values y(k) of the sequence are uniformly bounded for for k → ∞
independent of the time step size h.

Proof. The theorem follows immediately by iterating over the definition of B-
stability.

3.2.11 Corollary: A B-stable method is A-stable.

Proof. Apply the method to the linear differential model equation, which is
monotonic for <(λ) ≤ 0. Now, the definition of B-stability implies |R(z)| ≤ 1,
and thus, the method is A-stable.

3.2.1 L-stability

An undesirable feature of complex differentiable functions in the context of
stability of Runge-Kutta methods is the fact, that the limit limz→∞R(z) is well-
defined on the Riemann sphere, independent of the path chosen to approach this
limit in the complex plane. Thus, for any real number x, we have

lim
x→∞

R(x) = lim
x→∞

R(ix). (3.19)

Thus, a method, which has exactly the left half-plane of C as its stability domain,
seemingly a desirable property, has the undesirable property that components in
eigenspaces corresponding to very large negative eigenvalues, and thus decaying
very fast in the continuous problem, are decaying very slowly if such a method
is applied.

This gave raise to the following notion of L-stability. We nevertheless point out,
that the L-stable methods are not always to be considered better than A-stable
ones, like it is not always necessary to require A-stability. Judgment must be
applied according to the problem being solved.

54

3.2.12 Definition: An A-stable one-step method is called L-stable, if
for its stability function there holds

lim
z→∞

|R(z)| = 0. (3.20)

Some authors refer to L-stable methods as strongly A-stable.

3.3 General Runge-Kutta methods

3.3.1. According to theorem 3.2.7, ERK cannot be A- or B-stable. Thus, they
are not suitable for long term integration of stiff IVP. The goal of this chapter
is the study of methods not suffering from this limitation. The cure will be
implicit methods, where stages may not only depend on known values from the
past, but also on the value to be computed.

We point out at the beginning of this chapter, that the main drawback of these
methods is the fact that they require the solution of a typically nonlinear system
of equations and thus involve much higher computational effort. Therefore,
careful judgment should always be applied to determine whether a problem is
really stiff or an implicit method is needed for other reasons.

3.3.2 Definition: A Runge-Kutta method is a one-step method of
the form

gi = y0 + h

s∑
j=1

aijkj i = 1, . . . , s (3.21a)

ki = f(t0 + hci, gi) i = 1, . . . , s (3.21b)

y1 = y0 + h

s∑
i=1

biki (3.21c)

The method is called

ERK if j ≥ i⇒ aij = 0 (“explicit”)

DIRK if j > i⇒ aij = 0 (“diagonal implicit”)

SDIRK if DIRK and ∀i, j : aii = ajj (“singly diagonal implicit”)

IRK “implicit” in all other cases.

Example 3.3.3 (Two-stage SDIRK). Both SDIRK methods in table 3.1 are of
order three

55

1
2 −

√
3

6
1
2 −

√
3

6 0

1
2 +

√
3

6

√
3

3
1
2 −

√
3

6

1
2

1
2

1
2 +

√
3

6
1
2 +

√
3

6 0

1
2 −

√
3

6 −
√

3
3

1
2 +

√
3

6

1
2

1
2

(3.22)

Table 3.1: Two-stage SDIRK method of order 3

3.3.4 Lemma: The stability function of an s-stage Runge-Kutta method
with coefficients

A =

a11 · · · a1s

...
...

as1 · · · ass

 , b =

b1...
bs

 ,

is given by the two expressions

R(z) = 1 + zbT
(
I − zA

)−1

1
...
1

 =

det

I − zA+ z

b1 · · · bs
...

...
b1 · · · bs




det
(
I − zA

)
(3.23)

Proof. Entering f(u) = λu into the definition of the stages gi, we obtain the
linear system

gi = y0 + h

s∑
j=1

aijλgj , i = 1, . . . , s.

In matrix notation with z = hλ, we obtain (I − zA)g = (y0, . . . , y0)T , where g
is the vector (g1, . . . , gs)

T . Equally, we obtain

R(z)y0 = y1 = y0 + h

s∑
i=1

biλgi = y0 + zbT g

= y0 + zbT (I − zA)−1

y0

...
y0


=

1 + zbT (I − zA)−1

1
...
1


 y0.

56

Figure 3.2: Stability regions of the modified Euler method, the classical Runge-
Kutta method of order 4 and the Dormand/Prince method of order 5 (blue
stable, red unstable)

In order to prove the second representation, we write the whole Runge-Kutta
method as a single system of equations of dimension s+ 1:

(
I − zA 0
−zbT 1

)(
g
y1

)
= y0

1
...
1

 .

Applying Cramer’s rule yields the result.

3.3.5 Example: Stability functions of the modified Euler method, of
the classical Runge-Kutta method of order 4 and of the Dormand-Prince
method of order 5 are

R2(z) = 1 + z + z2

2

R4(z) = 1 + z + z2

2 + z3

6 + z4

24

R5(z) = 1 + z + z2

2 + z3

6 + z4

24 + z5

120 + z6

600

respectively. Their stability regions are shown in Figure 3.2.

57

3.3.6 Definition: The ϑ-scheme is the one-step method, defined for
ϑ ∈ [0, 1] by

y1 = y0 + h
(
(1− ϑ)f(y0) + ϑf(y1)

)
. (3.24)

It is an RKM with the Butcher Tableau

0 0 0
1 1− ϑ ϑ

1− ϑ ϑ
. (3.25)

Three special cases are distinguished:

ϑ = 0 explicit Euler method
ϑ = 1 implicit Euler method
ϑ = 1/2 Crank-Nicolson method

Furthermore, we define the variable ϑ-scheme where ϑ is of the form

ϑ =
1

2
+ γh.

3.3.7 Theorem: The ϑ-scheme is A-stable for ϑ ≥ 1/2. Furthermore, if
there exists a constant c such that ϑ−1/2 ≤ ch, the method is consistent
of second order.

Proof. Left as a homework question. Additionally, we show stability regions for
different ϑ in Figure

3.3.1 Existence and uniqueness of discrete solutions

While it was clear that the steps of an explicit Runge-Kutta method can always
be executed, implicit methods require the solution of a possibly nonlinear system
of equations. The solvability of such a system is not always clear. We will
investigate several cases here: First, Lemma 3.3.8 based on a Lipschitz condition
on the right hand side. Since this result suffers from a severe step size constraint,
we add Lemma 3.3.9 for DIRK methods based on right hand sides with a one-
sided Lipschitz condition. Finally, we present Theorem 3.3.10 for general Runge-
Kutta methods with one-sided Lipschitz condition.

58

Figure 3.3: Stability regions of the ϑ-scheme with ϑ = 0.5 (Crank-Nicolson),
ϑ = 0.6, ϑ = 0.7, and ϑ = 1 (implicit Euler).

59

3.3.8 Lemma: Let f : R × Cd → Cd be continuous and satisfy the
Lipschitz condition with constant L. If

hL <
1

max
i=1,...,s

s∑
j=1

|aij |
, (3.26)

then, for any y0 the Runge-Kutta method (3.21) has a unique solution
y1.

Proof. We prove existence and uniqueness by a fixed-point argument. To this
end, define the vectors k(m) = (k

(m)
1 , . . . , k

(m)
s)T ∈ Rsd for m = 1, . . . and the

iteration k(m) = F (k(m−1) by

k
(m)
i = Fi(k

(m−1)) = f

t0 + cih, y0 + h

s∑
j=1

aijk
(m−1)
j

 , i = 1, . . . , s.

Clearly the vector k = (k1, . . . , ks)
T ∈ Rsd of the Runge-Kutta method is a

fixed-point of this iteration. Using on Rsd the norm ‖k‖ = maxi=1,...,s|ki|,
where |.| is the regular Euclidean norm on Rd, we obtain the estimate

‖F (k1)− F (k2)‖ ≤

hL max
i=1,...,s

s∑
j=1

|aij |

 ‖k1 − k2‖.

Under assumption (3.26), the term in parentheses is strictly less than unity and
thus, the mapping F is a contraction. The Banach fixed-point theorem yields
the unique existence.

3.3.9 Lemma: Let f : R × Cd → Cd be continuous and satisfy the
one-sided Lipschitz condition with constant ν. If for i = 1, . . . , s

hν <
1

aii
(3.27)

then, for any y0 the DIRK method (3.21) has a unique solution y1.

Proof. The proof simplifies compared to the general case of an IRK, since each
stage depends explicitly on the previous stages and implicitly only on itself.
Thus, we can write

gi = y0 + vi + haiif(gi), with vi = h

i−1∑
j=1

aijf(gj). (3.28)

60

For linear IVP with diagonalizable matrix A, we have

(I − haiiA) gi = y0 + vi,

and assumption (3.27) implies that all eigenvalues of (I − haiiA) are positive,
thus, the inverse exists and we obtain a unique solution.

In the nonlinear case, we use a homotopy argument. To this end, we introduce
the parameter τ ∈ [0, 1] and set up the family of equations

g(τ) = y0 + τvi + haiif(g(τ)) + (τ − 1)haiif(y0).

For τ = 0 this equation has the solution g(0) = y0, and for τ = 1 the solution
g(1) = gi. By showing, that d

dτ g is bounded, we conclude that a solution exists,
since

g(1) = g(0) +

∫ 1

0

g′(s) ds (3.29)

There holds

g′(τ) = vi + haii∂yfg
′(τ) + haiif(y0).

Thus

|g′|2 = 〈g′, vi + haiif(y0)〉+ haii〈g′, ∂yfg′〉

≤ |g′||vi + haiif(y0)|+ haiiν|g′|2.

Here, we used that by the mean value theorem, there holds

〈∂yfu, u〉 ≤ ν|u|2, ∀u ∈ Cd.

We continue by stating that by assumption 1− haiiν > 0 and thus

|g′| ≤ |vi + haiif(y0)|
1− haiiν

.

Thus, we have proved existence of the stages gi. On the other handy1 is just a
fixed linear combination of these values, such that it exists as well. Uniqueness
follows immediately from A- or B-stability of the method.

3.3.10 Theorem: Let be f continuously differentiable and let it satisfy
the one-sided Lipschitz condition with constant ν. If the Runge-Kutta
matrix A is invertible and if there is a vector (d1, . . . , ds) with positive
entries, such that

hν <

〈
x,A−1x

〉
s∑
i=1

dix2
i

, ∀x ∈ Rs, (3.30)

then the nonlinear system 3.21a has a solution (g1, ..., gs).

61

Proof. We omit the proof here and refer to [HW10, Theorem IV.14.2]

3.3.11 Definition (Simplifying order conditions): Define the con-
ditions

B(ξ) :

s∑
i=1

bic
q−1
i =

1

q
q= 1, . . . , ξ (3.31a)

C(ξ) :

s∑
j=1

aijc
q−1
j =

cqi
q

q= 1, . . . , ξ
i= 1, . . . , s

(3.31b)

D(ξ) :

s∑
i=1

biaijc
q−1
i =

bj
q

(1− cqj)
q= 1, . . . , ξ
j= 1, . . . , s

(3.31c)

3.3.12 Theorem: If for a Runge-Kutta method condition B(p)
from (3.31a), condition C(ξ) from (3.31b), and condition D(η)
from (3.31c) are satisfied with ξ ≥ p/2 − 1 and η ≥ p − ξ − 1, then
the method is of order p.

Proof. For the proof, we refer to [HNW93, Ch. II, Theorem 7.4]. Here, we only
observe, that ∫ 1

0

tq−1 dt =
1

q
,

∫ ci

0

tq−1 dt =
cqi
q
.

If we now insert the function x at the places ci into the quadrature formula with
the quadrature weights bi, then we obtain (3.31a). Similarly we get (3.31b), if we
insert the value tq/q at the places ci from the quadrature formula with weights
aij for j = 1, . . . , s. In both cases we carry this out for all momomials until the
desired degree is reached. Due to linearity of the formulas the exactness holds
for all polynomials until this degree.

3.4 Methods based on quadrature and B-stability

3.4.1 Gauss-, Radau-, and Lobatto-quadrature

3.4.1. In this subsection, we review some of the basic facts of quadrature for-
mulas based on orthogonal polynomials.

62

3.4.2 Definition: Let Ln(t) be the Legendre polynomial of degree n on
[0, 1], up to scaling,

Ln(t) =
dn

dtn
(t2 − 1)n.

A quadrature formula, which uses the n roots of Ln as its quadrature
points and the integrals of the Lagrange interpolating polynomials as
its weights is called Gauß quadrature, more precisely, Gauß-Legendre
quadrature.

3.4.3 Definition: The Radau quadrature formulas use one end point
of the interval [0, 1] and the roots of orthogonal polynomials of degree
n− 1 as their abscissas. We distinguish left and right Radau quadrature
formulas, depending on which end is included. Lobatto quadrature
formulas use both end points and the roots of a polynomial of degree
n− 2. The polynomials are

Radau left pn(t) =
dn−1

dtn−1

(
tn(t− 1)n−1

)
, (3.32)

Radau right pn(t) =
dn−1

dtn−1

(
tn−1(t− 1)n

)
, (3.33)

Lobatto pn(t) =
dn−2

dtn−2

(
tn−1(t− 1)n−1

)
. (3.34)

3.4.4 Lemma: A Gauß quadrature formula with n points is exact for
polynomials of degree 2n−1. A Radau quadrature formula with n points
is exact for polynomials of degree 2n−2. A Lobatto quadrature formula
with n points is exact for polynomials of degree 2n− 3. The quadrature
weights of these formulas are positive.

3.4.2 Collocation methods

3.4.5. An alternative to solving IVP in individual points in time, is to de-
velop methods, which first approximate the solution function through a simpler
function. For example this could be a polynomial.

Polynomials are especially suitable for the computation with computers. They
are not suited though for high-order interpolation of large intervals. There-
fore, we apply them not on the entire interval but rather on subintervals. The
subintervals correspond to the time steps, which we used until now.

63

3.4.6 Definition: An s-stage collocation method with support points
c1, . . . , cs defines a collocation polynomial y(t) ∈ Ps through

y(t0) = y0 (3.35a)

y′(t0 + cih) = f
(
t0 + cih, y(t0 + cih)

)
i = 1, . . . , s. (3.35b)

We define the value at the end of the time step as

y1 = y(t0 + h). (3.35c)

3.4.7 Lemma: A s-stage collocation method with the points c1 to cs
defines a Runge-Kutta method of definition 3.3.2 with the coefficients ci
and

aij =

∫ ci

0

Lj(t) dt, bi =

∫ 1

0

Lj(t) dt. (3.36)

Here is Lj(t) Lagrange’s interpolation polynomial to point cj and to the
point set {c1, . . . , cs}:

Lj(t) =

s∏
k=1
k 6=j

t− ck
cj − ck

.

Proof. The polynomial y′(t) is of degree s − 1 and therefore uniquely defined
through s interpolation conditions in equation (3.35b). We set y′(x0 + cih) =
f
(
t0 + cih, y(t0 + cih)

)
= ki, such that we have

y′(x0 + th) =

s∑
j=1

kj · Lj(t) (3.37)

with the Lagrange interpolation polynomial Lj(t). By integration we obtain:

gi = y(x0 + cih) = y0 + h

ci∫
0

y′(x0 + th) dt = y0 + h

s∑
j=1

kj

∫ ci

0

Lj(t) dt, (3.38)

which defines the coefficients aij by comparison with (3.21a). If we integrate
to one instead of until ci, then we obtain the coefficients bj by comparison
with (3.21c).

64

3.4.8 Lemma: An implicit s-stage Runge-Kutta method of order s or
higher, with pairwise different support points ci is a collocation method
if and only if simplifying condition C(s) in (3.31b) is satisfied. In other
words, an s-stage method is a collocation method as soon as all the
“quadrature formulas” involved are of order at least s.

Proof. Condition C(s) from (3.31b) results in s2 interpolation conditions for s2

coefficients aij . Therefore these coefficients are defined uniquely. On the other
hand (3.31b) yields for q < s:

s∑
j=1

aijc
q
j =

cq+1
i

q + 1
=

∫ ci

0

tq dt.

As a consequence of linearity we have

s∑
j=1

aijp(ci) =

∫ ci

0

p(t) dt, ∀p ∈ Ps−1.

Applying this to Lagrange interpolation polynomials Lj(t), we obtain the co-
efficients of equation (3.36), which were in turn computed from the collocation
polynomial.

3.4.9 Theorem: Consider a collocation method with s pairwise different
support points ci and define

π(t) =

s∏
i=1

(t− ci). (3.39)

If π(t) is orthogonal on [0, 1] to all polynomials of degree r− 1 for r ≤ s,
then the collocation method (3.35) is of order p = s+ r.

Proof. The condition on π implies that the quadrature rule is exact for polyno-
mials of degree s + r − 1, thus B(s + r) holds. We have already shown in the
proof of Lemma 3.4.8, that C(s) holds. Therefore, it remains to show D(r).

First, we observe that first by C(s) and then by B(s + r) for any p < s and
q ≤ r there holds

s∑
i=1

s∑
j=1

bic
q−1
i aijc

p−1
j =

1

p

s∑
i=1

bic
p+q−1
i =

1

p(p+ q)
.

65

Furthermore, since B(s+ r) we have for the same p and q:

1

q

s∑
j=1

(
bjc

p−1
j − bjcp+q−1

j

)
=

1

q

(
1

p
− 1

p+ q

)
=

1

p(p+ q)
.

Subtracting these two and integrating the last result yields

0 =
1

p(p+ q)
− 1

p(p+ q)
=
∑
j

cp−1
j

(∑
i

bic
q−1
i aij −

1

q
bj
(
1− cqj

))
︸ ︷︷ ︸

:=ξi

.

This holds for p = 1, . . . , s − 1 and thus amounts to a homogeneous, linear
system in the variables ξi. Thus, ξi = 0 and the theorem holds. Oops!

Corollary 3.4.10. An s-stage collocation method is at least of order s and at
most of order 2s.

Proof. The polynomial π(t) in (3.39) is of degree s. As a result it can be
orthogonal on all polynomials of degree s − 1 in the best case. Otherwise it
would be orthogonal to itself. The transformed Legendre polynomial of degree
s on the interval [0, 1] satisfies this condition and theorem 3.4.9 holds true with
r = s. On the other hand π(t) is not orthogonal on the constants. In this case
the theorem holds true with r = 0.

3.4.11 Theorem: The collocation polynomial y(t), defined through
an s-stage collocation method of the form (3.35), defines a continuous
Runge-Kutta method of order s. This means for the difference of the
exact solution u(t) of the initial value problem and the collocation poly-
nomial y(t) we get the estimate

|u(t)− y(t)| ≤ Chs+1. (3.40)

Additionally we obtain for the derivatives of order k ≤ s the estimate

|u(k)(t)− y(k)(t)| ≤ Chs+1−k. (3.41)

Proof. y′ is the interpolation polynomial of degree s − 1 in the interpolation
points c1, . . . , cs. There holds

max
t∈[t0,t1]

|y′(t)− u′(t)| ≤ c max
t∈[t0,t1]

|u(s+1)(t)| · hs.

We now write

y(t)− u(t) =

∫ t

0

y′(τ)− u′(τ)dτ ≤
∫ t

0

hs · c max
t∈[t0,t1]

|u(s+1)(t)|dτ = chst ≤ chh+1.

66

Since by taking the derivative one loses one order, we obtain

max
t∈[t0,t1]

|y(k)(t)− u(k)(t)| ≤ chs−k+1 max
t∈[t0,t1]

|u(s+1)(t)|.

Defining C = cmaxt∈[t0,t1] |u(s+1)(t)| yields the desired result.

3.4.12 Definition: An s-stage Gauß-Collocation method is a collo-
cation method, where the collocation points are the set of s Gauß points
in the interval [0, 1], namely the roots of the Legendre polynomial of
degree s.

3.4.13 Example (2- and 3-stage Gauss collocation methods):

3−
√

3
6

1
4

1
4 −

√
3

6

3+
√

3
6

1
4 +

√
3

6
1
4

1
2

1
2

5−
√

15
10

5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

5+
√

15
10

5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

see [HNW93, Tables 7.3, 7.4]

3.4.14 Theorem: The s-stage Gauß-collocation method is consistent of
order 2s and thus of optimal order.
The s-stage Radau- and Lobatto-collocation methods are of orders 2s−1
and 2s− 2, respectively.

Proof. Gauß quadrature is exact for polynomials of degree 2s− 1 and we have
that π in Theorem 3.4.9 is of order s. Therefore, the same theorem concludes
that the method is of order 2s. The same proof applies to Radau- and Lobatto-
quadrature rules with their reduced orders.

3.4.15 Theorem: Collocation methods with Gauß-, right Radau-
and Lobatto-quadrature are B-stable. The stability region of Gauß-
collocation is exactly the left half-plane of C.

Proof. We only prove the theorem for Gauß-collocation, where the proof is sim-
ple and instructive. The proof for Radau- and Lobatto-collocation can be found
in [HW10].

67

Let be y(t) and z(t) the collocation polynomials according to (3.35) with respect
to initial values y0 or z0. Analogous to the proof of theorem 3.1.6 we introduce
the auxiliary functionm(t) = |z(t)−y(t)|2. In the collocation points ξi = t0+cih,
there holds

m′(ξi) = 2< 〈z′(t)− y′(t), z(t)− y(t)〉
= 2< 〈f(ξi, z(ξi))− f(ξi, y(ξi)), z(t)− y(t)〉 ≤ 0. (3.42)

Since Gauß quadrature is exact for polynomials of degree 2s− 1, we have:

|z1 − y1|2 = m(t0 + h) = m(t0) +

∫ t0+h

t0

m′(t) dt

= m0 + h

s∑
i=1

bim
′(ξi) ≤ m(t0) = |z0 − y0|2.

Applying this argument to f(t, u) = λu, we see A, we see from (3.42) that

m′(t) = 2<(λ)|z(t)− y(t)|2,

which proves the statement about the stability domain.

3.4.16 Example (2- and 3-stage right Radau collocation meth-
ods):

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Remark 3.4.17. The Radau-collocation methods with right end point of the
interval [0, 1] included in the quadrature set are L-stable. The stability regions
of the first three are shown in Figure 3.4.

Observe that the stability domains are growing with order of the method. Also,
observe that the computation of y1 coincides with that of gs, such that we can
save a few operations.

3.5 Considerations on implementation

3.5.1. Implicit Runge-Kutta methods require the solution of a nonlinear system
of size s · d, where s is the number of stages and d the dimension of the system
of ODE. DIRK methods are simpler and only require the solution of a system
of dimension d. Thus, we should prefer this class of methods, weren’t it for

68

Figure 3.4: Stability domains of right Radau-collocation methods with one (im-
plicit Euler), two, and three collocation points (left to right). Note the different
scaling of coordinate axes in comparison with previous figures.

3.5.2 Theorem: A B-stable DIRK method has at most order 4

Proof. See [HW10, Theorem 13.13].

Remark 3.5.3. In each step of an IRK, we have to solve a (non-)linear system
for the quantities gi. First, we note that in order to reduce round-off errors, it
is advantageous to solve for zi = gi − y0, since, especially for small time steps,
zi is expected to be much smaller than gi. Thus, we have to solve the system

zi = h

s∑
j=1

aijf(t0 + cjh, y0 + zj), i = 1, . . . , s. (3.43)

Using the Runge-Kutta matrix A, we rewrite this asz1

...
zs

 = A

hf(t0 + c1h, y0 + z1)
...

hf(t0 + csh, y0 + zs)

 . (3.44)

The latter can be used to avoid additional function evaluations by computing

y1 = y0 + bTA−1z, (3.45)

which again is numerically much more stable than evaluating f with a possibly
large Lipschitz constant.

69

Chapter 4

Newton and quasi-Newton
methods

4.1 Basics of nonlinear iterations

4.1.1. The efficient solution of nonlinear problems is an important ingredient to
implicit timestepping schemes as well as shooting methods. Without attempting
completeness, we present some important facts about iterative methods for this
problem. We introduce the two generic schemes, Newton and gradient methods,
discuss their respective pros and cons and combine their features in order to
obtain better methods.

4.1.2 Definition: We consider two formulations of nonlinear root find-
ing problems

f(x) = 0, f : Rd → Rd (4.1)

and

x = argminF (y) F : Rd → R. (4.2)

These two problems are equivalent by either choosing for instance

f(x) = ∇F (x) or F (x) = |f(x)|.

70

4.1.3 Definition: An iteration

x(k+1) = G
(
x(k)

)
is said to be convergent of order p if there holds for p ≥ 1:

‖x(k+1) − x∗‖ ≤ c‖x(k) − x∗‖p,

and if for p = 1 there holds c < 1. For p > 1, such a method converges
only locally, namely if ‖x(0) − x∗‖ is sufficiently small, for instance

‖x(0) − x∗‖p−1
<

1

c
.

4.1.4 Definition: The Newton method for finding the root of the
nonlinear equation f(x) = 0 reads: given an initial value x(0), compute
iterates x(k), k = 1, 2, . . . by the rule

J = ∇f
(
x(k)

)
,

Jd(k) = f(x(k)),

x(k+1) = x(k) − d(k).

(4.3)

We denote by the term quasi-Newton method any modification of
this scheme employing an approximation J̃ of the Jacobian J .

4.1.5 Theorem (Newton-Kantorovich): Let f : Rd → Rd be differ-
entiable with

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ x, y ∈ Rd, (4.4)∣∣∣∣0(∇f (x(0)
))−1

∣∣∣∣ 0 ≤M. (4.5)

If

β0 := LM
∣∣∣0f (x(0)

)∣∣∣ 0 ≤ 1

2
, (4.6)

the Newton method converges to a root of f(x).For β0 < 1/2, this con-
vergence is quadratic.

Remark 4.1.6. Instead of proving the Newton-Kantorovich theorem, we dis-
cuss its main assumptions and features. First, we note that it does not require
that the initial value be close to a root, or even assumes the existence of a root.
The theorem is actually an existence proof.

71

The Lipschitz condition on ∇f can be seen as the deviation of f from being
linear. Indeed, if f were linear, then L = 0 and provided M 6= 0 the method
converges in a single step for any initial value.

The larger the constant M , the smaller wone of the eigenvalues of the Jaco-
bian. Therefore, the function becomes flat in that direction and the root finding
problem becomes unstable.

If we have convergence due to β0 ≤ 1/2 (the proof shows contraction) there
holds β1 := LM

∣∣0f (x(1)
)∣∣ 0 < 1/2 and we have quadratic convergence from

the second step on.

4.1.7 Definition: The gradient method for finding minimizers of a
nonlinear functional F (x) reads: given an initial value x(0), compute
iterates x(k), k = 1, 2, . . . by the rule

d(k) = −∇F (x(k)),

αk = argmin
α>0

F
(
x(k) + αd(k)

)
x(k+1) = x(k) + αkd

(k).

(4.7)

The minimization process used to compute αk, also called line search, is
one-dimensional and therefore simple. It may be replaced by a heuristic
choice of αk.

4.1.8 Theorem: Let F (x) : Rd → R be continuously differentiable and
let x(0) ∈ Rd be chosen such that the set

K =
{
x ∈ Rd

∣∣F (x) ≤ F (x(0))
}

is compact. Then, each sequence defined by the gradient method has at
least one accumulation point and each accumulation point is a stationary
point of F (x).

4.2 Globalization

4.2.1. The convergence of the Newton method is only local, and it is the faster,
the closer to the solution we start. Thus, finding good initial guesses is an
important task. A reasonable initial guess in a one-step method seems to be y0,
but on closer inspection, this is true only if the time step is small. Therefore,
the convergence requirements of Newton’s method would insert a new time

72

step restriction, which we want to avoid in the context of implicit methods.
Therefore, and for other cases like the shooting methods of chapter 6, we present
methods which extend the domain of convergence.

As a rule, Newton’a method should never be implemented without some glob-
alization strategy!

4.2.2 Definition: The Newton method with line search for finding
the root of the nonlinear equation f(x) = 0 reads: given an initial value
x(0), compute iterates x(k), k = 1, 2, . . . by the rule

J = ∇f
(
x(k)

)
,

Jd(k) = f(x(k)),

αk = argmin f(x(k) − αd(k))

x(k+1) = x(k) − αkd(k).

(4.8)

4.2.3 Definition: The Newton method with step size control for
finding the root of the nonlinear equation f(x) = 0 reads: given an initial
value x(0), compute iterates x(k), k = 1, 2, . . . by the rule

J = ∇f
(
x(k)

)
,

Jd(k) = f(x(k)),

x(k+1) = x(k) − 2−jd(k).

(4.9)

Here, j is the smallest integer number, such that

f(x(k) − 2−jd(k)) < f(x(k)), (4.10)

for practical purposes.

Remark 4.2.4. The step size control algorithm can be implemented with very
low overhead. In fact, in each Newton step we only have to compute the norm
of the residual, which is typically needed for the stopping criterion anyway.
Additional work is only needed if the residual grows. But this is the case, when
the original method was likely to fail.

The convergence proof does not guarantee that the values of j remain bounded.
Practically, this is irrelevant, since typically the step size control only triggers
within the first few steps, then the quadratic convergence of the Newton method
starts.

73

4.2.5 Definition: For a given vector v ∈ Rd and γ > 0 we define the
spherical disc

Sγ(v) =
{
s ∈ Rd

∣∣∣|s| = 1 ∧ v · s ≥ γ|v|
}
. (4.11)

A descent method is an iterative method for finding minimizers of the
functional F (x) that computes iterate x(k+1) from iterate x(k) by the
following steps:

1. Choose a search direction:

s ∈ Sγ
(
∇F (x(k))

)
,

and a positive parameter µ.

2. Update:

x(k+1) = x(k) − µs.

Remark 4.2.6. Obviously, the gradient method is a descent method, where
the direction s is chosen parallel to ∇F (x(k)) and µ is chosen in an optimal way.
It is also called the method of steepest descent.

4.2.7 Lemma: The Newton method applied to the function f(x) is a
descent method applied to the functional F (x) = |f(x)|2. The same
holds for the Newton method with line search or step size control.

Proof. By the product rule, there holds

∇F (x) = 2fT (x)∇f(x).

The search direction of the Newton method is

s = − d(k)

|d(k)|
=

(
∇f(x(k))

)−1
f(x(k))

|. . .|

Thus, omitting the arguments x(k), we obtain

∇F s
‖∇F‖

=
fT∇f(x)

(
∇f
)−1

f

‖
(
∇f
)−1

f‖ ‖fT∇f(x)‖
≥ |f |2

‖
(
∇f
)−1‖ ‖f‖2‖∇f(x)‖

=
1

cond2(∇f(x))
,

where we used the operator norm ‖.‖ of matrices with respect tot the Euclidean
norm of Rd. cond2(A) is the spectral condition of A, namely

cond2(A) = ‖A‖ ‖A−1‖.

74

With 4.11 we conclude that s ∈ Sγ(∇F) for any γ with

γ ≤ 1

cond2(∇f(x))
.

The different variants of the Newton method are only distinguished by a different
choice of the scaling parameter µ.

4.2.8 Lemma: Let F : Rd → R be continuously differentiable. For a
given point x, assume ∇F = ∇F (x) 6= 0. Then, there is a constant
λ > 0 such that for any s ∈ Sγ(∇F (x)) and any 0 ≤ µ ≤ λ there holds

F (x− µs) ≤ F (x)− γµ

2
|∇F (x)|. (4.12)

In particular, a positive scaling factor µ for the descent method can
always be found.

Proof. First, define

U1(x) =
{
y ∈ Rd

∣∣|∇F (y)−∇F (x)| ≤ γ
2 |∇F (x)|

}
.

Since ∇F is continuous and ∇F (x) 6= 0, this set is a nonempty neighborhood
of x. Choose now λ such that

Bλ(x) ⊆ U1(x),

Hence, for any µ ∈ (0, λ) and s ∈ Sγ(∇F (x)), there holds by the mean value
theorem with 0 < ϑ < 1

F (x)− F (x− µs) = µ∇F (x− ϑµs)s

= µ
((
∇F (x− ϑµs)−∇F (x)

)
+∇F (x)

)
.

Using the definitions of U1(x) and U2(x), we obtain

F (x)− F (x− µs) ≥ −γµ2 |∇F (x)|+ µDF (x)s

≥ −γµ2 |∇F (x)|+ µγ|∇F (x)|
= γµ

2 |∇F (x)|.

75

4.3 Practical considerations

4.3.1. Quadratic convergence is an asymptotic statement, which for any prac-
tical purpose can be replaced by “fast” convergence. Most of the effort spent
in a single Newton step consists of setting up the Jacobian J and solving the
linear system in the second line of (4.3). Therefore, we will consider techniques
here, which avoid some of this work. We will have to consider two cases

1. Small systems with d . 1000. For such systems, a direct method like LU -
or QR-decomposition is advisable in order to solve the linear system. To
this end, we compute the whole Jacobian and compute its decomposition,
an effort of order d3 operations. Comparing to d2 operations for applying
the inverse and order d for all other tasks, this must be avoided as much
as possible.

2. Large systems, where the Jacobian is typically sparse (most of its entries
are zero). For such a system, the effort of order d2 for a full matrix vector
multiplication is already not affordable. Therefore, the linear problem
is solved by an iterative method and we will not have to compute the
Jacobian at all.

Remark 4.3.2. In order to save numerical effort constructing and inverting
Jacobians, the following strategies have been successful.

• Fix a threshold 0 < η < 1 which will be used as a bound for error reduc-
tion. In each Newton step, first compute the update vector d̂ using the
Jacobian Ĵ of the previous step. This yields the modified method

Jk = Jk−1

x̂ = x(k) − J−1
k f(x(k))

If |f(x̂)| ≤ η|f(x(k))| x(k+1) = x̂

Else Jk =
(
∇f(x(k)

)−1
x(k+1) = x(k) − J−1

k f(x(k)).

(4.13)

Thus, an old Jacobian and its inverse are used until convergence rates
deteriorate. This method is again a quasi-Newton method which will not
converge quadratically. However, we can obtain linear convergence at any
rate η.

• If Newton’s method is used within a time stepping scheme, the Jacobian
of the last Newton step in the previous time step is often a good approx-
imation for the Jacobian of the first Newton step in the new time step.
This holds in particular for small time steps and constant extrapolation.
Therefore, the previous method should also be extended over the bounds
of time steps.

76

• An improvement of the method above can be achieved by so called rank-1
updates. Given x(k) and x(k−1), compute

p = x(k) − x(k−1)

q = f(x(k))− f(x(k−1))

Jk = Jk−1 +
1

|p|2
(q − Jk−1p) p

T

(4.14)

The fact that the rank of Jk − Jk−1 is at most one can be used to obtain
a decomposition of Jk in a cheap way from one for Jk−1.

Remark 4.3.3. For problems leading to large, sparse Jacobians, typically
space discretizations of partial differential equations, computing inverses of LU -
decompositions is infeasible. These matrices typically only feature a few nonzero
elements per row, while the inverse and the LU -decomposition is fully populated,
thus increasing the amount of memory from d to d2.

Linear systems like this are often solved by iterative methods, leading for in-
stance to so called Newton-Krylov methods. Iterative methods approximate the
solution of a linear system

Jd = f

only using multiplications of a vector with the matrix J . On the other hand,
for any vector v ∈ Rd, the term Jv denotes the directional derivative of f in
direction J . Thus, it can be approximated easily by

Jv ≈
f
(
x(k) + εv

)
− f

(
x(k)

)
ε

.

The term f
(
x(k)

)
must be calculated anyway as it is the current Newton resid-

ual. Thus, each step of the iterative linear solver requires one evaluation of the
nonlinear function, and no derivatives are computed.

The efficiency of such a method depends on the number of linear iteration steps
which is determined by two factors: the gain in accuracy and the contraction
speed. It turns out that typically gaining two digits in accuracy is sufficient
to ensure fast convergence of the Newton iteration. The contraction number is
a more difficult issue and typically requires preconditioning, which is problem-
dependent and as such must be discussed when needed.

77

Chapter 5

Linear Multistep Methods

5.0.1. In the previous methods we obtained the value after the next time step
always by using one initial value at the beginning of the current time interval,
possibly with the help of intermediate steps. These methods often are accused to
have a higher computation time than methods which use several previous points,
the argument being that function values at these points have been computed
already. Such methods using values of several time steps in the past are called
multistep methods. They are constructed such that using more steps yields a
method of higher order.

We will begin this chapter by introducing some of the formulas. Afterwards, we
will study their stability and convergence properties.

Example 5.0.2 (Adams-Moulton formulas). Basically, there are two construc-
tion principles for the multistep methods: Quadrature and numerical differen-
tiation. We postpone the latter to example 5.0.4 and deal with the former for
now. As first example we choose the class of Adams-Moulton methods for which
the integral from point tk−1 to point tk is approximated by a quadrature of the
points tk−s to tk, hence

yk = yk−1 +

s∑
r=0

fk−r

∫ tk

tk−1

Lr(t) dt, (5.1)

where fj denotes the function value f(tj , yj) and Lr(t) the Lagrange interpo-
lation polynomial to point tr with respect to the points tk−s, . . . , tk. This is
shown in Figure 5.1. Since the integral involves the point being computed itself,

78

tktk−1tk−2tk−3tk−s

Figure 5.1: The quadrature of Adams-Moulton formulas: the integration inter-
val is marked by the wavy line in the end. The support points of the quadrature
are stated under the line.

tk

tk−1tk−2tk−3tk−s

Figure 5.2: The quadrature of Adams-Bashforth formulas: the integration inter-
val is marked by the wavy line in the end. The support points of the quadrature
are stated under the line.

these methods are implicit. The first of these are

yk = yk−1 + hfk

yk = yk−1 +
1

2
h
(
fk + fk−1

)
yk = yk−1 +

1

12
h
(
5fk + 8fk−1 − fk−2

)
yk = yk−1 +

1

24
h
(
9fk + 19fk−1 − 5fk−2 + fk−3

)
Example 5.0.3 (Adams-Bashforth formulas). With the same principle we ob-
tain explicit methods by omitting the point in time tk in the definition of the
interpolation polynomial. See Figure 5.2. This yields quadrature formulas of
the form

yk = yk−1 +

s∑
r=1

fk−r

∫ tk

tk−1

Lr(t) dt. (5.2)

Again, we list the first few:

yk = yk−1 + hfk−1

yk = yk−1 +
1

2
h
(
3fk−1 − 1fk−2

)
yk = yk−1 +

1

12
h
(
23fk−1 − 16fk−2 + 5fk−3

)
yk = yk−1 +

1

24
h
(
55fk−1 − 59fk−2 + 37fk−3 − 9fk−4

)
Example 5.0.4. Backward differencing formulas (BDF) are as well based on
Lagrange interpolation at the points tk−s to tk. In contrast to Adams formulas

79

they do not use quadrature for the right hand side, but rather the derivative
of the interpolation polynomial in the point tk. Using Lagrange interpolation
polynomials Li(t), we let

y(t) =

s∑
r=0

yn−rLn−r(t),

where yn is still to determine. Now we assume that y solves the ODE in point
tn, hence

y′(tn) = f(tn, yn) =

s∑
r=0

yn−rL
′
n−r(tn).

This yields the following schemes:

yk − yk−1 = hfk

yk − 4
3yk−1 + 1

3yk−2 = 2
3hfk

yk − 18
11yk−1 + 9

11yk−2 − 2
11yk−3 = 6

11hfk

yk − 48
25yk−1 + 36

25yk−2 − 16
25yk−3 + 3

25yk−4 = 12
25hfk

Remark 5.0.5. We know from introduction to numerical analysis, that the
numerical differentiation and the extrapolation, the evaluation of interpolation
polynomials outside of the interval which is spanned through the interpola-
tion points, are not stable. Therefore, we expect stability problems for the
Adams-Bashforth and BDF methods. Moreover we remember that Lagrange
interpolation with equidistant support points is unstable for a high polynomi-
als. Therefore, we also expect that all methods above perform well only with
moderate order.

5.1 Definition and consistency of LMM

5.1.1 Definition: A linear multistep method (LMM) with s steps
is a method of form

s∑
r=0

αs−ryk−r = h

s∑
r=0

βs−rfk−r, (5.3)

where fk = f(tk, yk) and tk = t0 + hk. There are explicit (βs = 0) and
implicit (βs 6= 0) methods. For these methods, we define the first and
second generating polynomials

%(x) =

s∑
r=0

αs−rx
s−r =

s∑
r=0

αrx
r σ(x) =

s∑
r=0

βrx
r. (5.4)

80

Remark 5.1.2. The LMM was defined for constant step size h. In principle
it is possible to implement the method with a variable step size but we restrict
ourselves to the constant case. Notes to the step size control can be found later
on in this chapter.

Remark 5.1.3. One-step methods were always denoted by describing how to
compute y1 from y0. Here, the notation becomes more complicated, but some-
times we consider only ys computed from y0, . . . , ys−1 implying the same rues
for yk computed from yk−s, . . . , yk−1.

5.1.4 Definition: We express the LMM with the linear difference
operator

(Lhu)(tk) =

s∑
r=0

(
αs−ru(tk−r)− hβR−rf

(
tk−r, u(tk−r)

))
(5.5)

and for a continuous function u we define the truncation error

τh(tk) = 1
hLhu(tk). (5.6)

The local error of a linear multistep method is defined by

y(ts)− ys

where u(t) denotes the exact solution of u′ = f(t, u), u(t0) = u0 and ys
the numerical solution by using the exact initial values yi = u(ti) for
i = 0, 1, ..., s− 1.

Lemma 5.1.5. Consider the differential equation

y′ = f(t, y) y(t0) = y0

where f is given continuously differentiable and y(t) is the exact solution. For
the local error we obtain

y(tk)− yk =

(
α0I− hβ0

∂f

∂y
(tk, η)

)−1

(Lhu)(tk). (5.7)

Here η is a value between y(tk) and yk if f is a scalar function. If f is multidi-
mensional, the matrix ∂f

∂y (tk, η) is the Jacobi matrix, which rows are evaluated
at possible places between y(tk) and yk.

81

Proof. Considering the local error we can assume exact initial values and there-
fore we can transform 5.3 to:

αsyk +

s∑
r=1

αs−ry(tk−r) = h

(
βsfk +

s∑
r=1

βs−rfk−r

)

We transform further:

s∑
r=0

(αry(tk−r)− hβrf(tk−r, y(tk−r)))

− α0y(tk) + hβ0f(tk, y(tk)) + α0yk − hβ0f(tk, yk) = 0.

We now insert 5.5 which results in

(Lhu)(tk) = α0 (y(tk)− yk)− hβ0 (f(tk, y(tk))− f(tk, yk))

(y(tk)− yk)

(
α0I− hβ0

f(tk, y(tk))− f(tk, yk)

y(tk)− yk

)
By application of the mean value theorem and subsequent transformation we
obtain the statement of the theorem.

5.1.6 Definition: An LMM is consistent of order p, if for all sufficient
regular functions u and all relevant k there holds

τh(tk) = O(hp), (5.8)

or equivalently, that the local error is O(hp+1).

5.1.7 Lemma: An LMM is consistent of order p if and only if for all
polynomials ϕq of degree q ≤ p and f(t, q(t)) = q′(t) there holds:

Lhϕq = 0. (5.9)

Proof. We start with the Taylor expansion of a solution u of the ODE and the
corresponding right hand side f for tk, where we insert, unlike usual, f = u′:

u(t) =

p∑
i=0

u(i)(tk)

i!
(t− tk)i +

u(p+1)(ξ)

(p+ 1)!
(t− tk)p+1=:ϕ(t) + ru(t)

f
(
t, u(t)

)
=

p∑
i=1

u(i)(tk)

(i− 1)!
(t− tk)i−1 +

u(p+1)(ξ)

p!
(t− tk)p=:ϕ′(t) + rf (t),

82

with the Taylor polynomial ϕ(t) of degree p and remainder ru(t) and rf (t). Out
of this we calculate:

Lhu(tk) =

s∑
r=0

αs−rϕ(tk−r)− h
s∑
r=0

βs−rϕ
′(tk−r)

+

s∑
r=0

αs−rru(tk−r)− h
s∑
r=0

βs−rrf (tk−r).

Since tk−r−tk = rh, the first row equals a polynomial ψ(h) in h of degree p. For
the second row we insert the reminder estimate ru(t) = O((t− tk)p+1) = hrf (t)
and get:

Lhu(tk) = Lhϕ(tk) +O(hp+1) = ψ(h) +O(hp+1). (5.10)

According to the definition of the truncation error, this term has to be of order
p+ 1, such that the method is of order p. However it is ψ of degree p. This can
only hold true if Lhϕ = ψ ≡ 0. On the other hand τh(tk) automatically is of
order p. Since u is the solution of an arbitrary right hand side, this condition
has to be satisfied for all kind of Taylor polynomials ϕ of degree p.

5.1.8 Theorem: A LMM with constant step size is consistent of order
p if and only if

s∑
r=0

αr = 0,

s∑
r=0

(
αrr

q − qβrrq−1
)

= 0, q = 1, . . . , p

(5.11)

Proof. According to lemma 5.1.7 it is sufficient to show that (5.11) is equivalent
to Lhϕq = 0 for polynomials of degree q ≤ p. Due to linearity of the method it
however is sufficient to show this for a basis of the polynomial space of degree
p. For that we choose the monomial basis of the form

πq(t) =

(
t− tk−s

h

)q
, q = 0, . . . , p.

For those it holds: πq(tk−r) = (s − r)q. Now we see that the first condition is
Lhπ0 = 0 (here is π′0 ≡ 0) and the second condition is Lhπq = 0.

Remark 5.1.9. As shown in a homework problem, a consistent LMM is not
necessary convergent. To understand this behavior and develop criteria for
convergence we need to diverge into the theory of difference equations.

83

5.2 Properties of difference equations

5.2.1. The stability of LMM can be understood by employing the fairly old
theory of difference equations. In order to keep the presentation simple in this
section, we use a different notation for numbering indices in the equations.
Nevertheless, the coefficients of the characteristic polynomial are the same as
for LMM.

5.2.2 Definition: An equation of the form

s∑
r=0

αryn+r = 0 (5.12)

is called a homogeneous difference equation. A sequence {yn}n=0,...,∞
is solution of the difference equation, if the equation holds true for all
n ≥ s. The values yn may be from any of the spaces R, C, Rd or Cd.
The generating polynomial of this difference equation is

χ(x) =

s∑
r=0

αrx
r. (5.13)

5.2.3 Lemma: The solutions of the equation (5.12) with yn ∈ R or
yn ∈ C form a vector space of dimension s.

Proof. Since the equation (5.12) is linear and homogeneous, it is obvious that
if two sequences of solutions {y(1)} and {y(2)} satisfy the equation, sums of
multiples of them satisfy it too.

As soon as the initial values y0 to ys−1 are chosen, all other sequence members
are uniquely defined. Moreover it holds

y0 = y1 = · · · = ys−1 = 0 =⇒ yn = 0, n ≥ 0.

Therefore it is sufficient to consider the first s values. If they are linear inde-
pendent, then the overall sequences are and vice versa. Thus, the initial values
form a s dimensional vector space.

5.2.4 Lemma: For each root ξ of the generating polynomial χ(x) the
sequence yn = ξn is a solution of the difference equation (5.12).

84

Proof. Inserting of the solution yn = ξn into the difference equation results in
s∑
r=0

αrξ
n+r = ξn

s∑
r=0

αrξ
r = ξnχ(ξ) = 0.

5.2.5 Theorem: Let be {ξi}i=1,...,ι the roots of the generating polyno-
mial χ with multiplicity νi. Then, the sequences of the form

y(i,k)
n = nk−1ξni i = 1, . . . , ι; k = 1, . . . , νi (5.14)

form a basis of the solution space of the difference equation (5.12).

Proof. First we observe that the sum of the multiplicities of the roots results in
the degree of the polynomial:

s =

ι∑
i=1

νi.

Moreover we know because of Lemma 5.2.3, that s is the dimension of the
solution space. We show that the sequences {y(i,k)

n } are linear independent.
This is clear for sequences of different index i. It is also clear for different
roots, because for n→∞ the exponential function nullifies the influence of the
polynomials.

It remains to show that the sequences {y(i,k)
n } in fact are solutions of the dif-

ference equations. For k = 0 we have proven this already in lemma 5.2.4. We
proof the fact here for k = 2 and for a double zero ξi; the principle for higher
order roots should be clear then. Equation (5.12) applied to the sequence {nξni }
results in

s∑
r=0

αr(n+ r)ξn+r
i = nξni

s∑
r=0

αrξ
r
i + ξn+1

i

s∑
r=1

αrrξ
r−1
i

= nξni %(ξi) + ξn+1
i %′(ξi) = 0.

Here the term with α0 vanishes, because it is multiplied with r = 0. %(ξi) =
%′(ξi) = 0 because ξi is a multiple root.

5.2.6 Corollary (Root test): All solutions {yn} of the difference equa-
tion (5.12) are bounded for n→∞ if and only if it holds:

• all roots of the generating polynomial χ(x) lie in the closed unit
circle

{
z ∈ C

∣∣ |z| ≤ 1
}
and

• all roots on the boundary of the unit circle are simple.

85

Proof. According to theorem 5.2.5 we can write all solutions as linear combina-
tions of the sequences y(i,k) in equation (5.14). Therefore,

1. all solutions to |ξi| < 1 for n→∞ converge to zero

2. all solutions to |ξi| > 1 for n→∞ converge to infinity

3. all solutions to |ξi| = 1 for n→∞ stay bounded if and only if ξi is simple.

This proves the statement of the theorem.

5.3 Stability and convergence

Remark 5.3.1. In contrast to one-step methods the convergence of multistep
methods follows not directly from the consistency of the method, if the right
hand side of the differential equation satisfies the Lipschitz condition (1.23).
Analog to the A-stability we will discuss this by means of a simple model prob-
lem and we will deduce stability conditions.

Remark 5.3.2. In the following we investigate the solution to a fixed point in
time t with a shrinking step size h. Therefore we choose n steps of step size
h = t/n and let n go towards infinity.

5.3.3 Definition: An LMM is stable if, applied to the trivial ODE

u′ = 0 (5.15)

with arbitrary initial values y0 to ys−1, it generates solutions yk which
stay bounded at each point in time t > 0, if the step size h converges to
zero. This property is also called zero stable or D-stable.

5.3.4 Theorem: A LMM is stable if and only if all roots of the first
generating polynomial %(x) of equation (5.4) lie in the unit circle of the
complex plane and all roots on the boundary of the unit circle are simple.

Proof. The application of the LMM to the equation (5.15) results in the differ-
ence equation

s∑
r=0

αs−ryn−r = 0.

86

Now we have to proof that the solutions for fixed t = hn stay bounded if h→ 0.
But we also see that the upper equation does not contain h. Therefore we
have to examine, if the solutions yn stay bounded for n → ∞. By resorting
the summation we obtain a difference equation of the form (5.12). Due to
corollary 5.2.6 it follows the statement of the theorem.

5.3.5 Corollary: Adams-Bashforth and Adams-Moulton methods are
stable.

Proof. For all of these methods the first generating polynomial is %(x) = xs −
xs−1. It has the simple root ξ1 = 1 and the s− 1-fold root 0.

5.3.6 Theorem: The BDF methods are stable for s ≤ 6 and not stable
for s ≥ 7.

5.3.7 Definition: An LMM is convergent of order p, if for any IVP with
sufficiently smooth right hand side f there exists a positive constant h0

such that for h ≤ h0 there holds

|u(tn)− y(tn)| ≤ chp, (5.16)

whenever the initial values satisfy

|u(ti)− y(ti)| ≤ c0hp. (5.17)

Here, u is the continuous solution of the IVP and y is the solution gen-
erated by the LMM.

87

5.3.8 Lemma: Every multistep method can be recast as a one-step
method

Yk = (A⊗ I)Yk−1 + hFh(tk−1, Yk−1) (5.18)

where with α′r = αr/αs

Yk =

 yk
...

yk−s+1

 , A =


−α′s−1 −α′s−2 · · · −α′0

1 0 · · · 0
. . . · · · 0

1 0

 , (5.19)

and Fh(tk, Yk) = (e1⊗ I)ψh(tk−1, Yk−1) with β′r = βr/αs and ψh defined
implicitly by

ψh(tk−1, Yk−1) =

s∑
r=1

βs−rf(tk−r, yk−r)

+ β′sf

(
tk, hψh(tk−1, Yk−1)−

s∑
r=1

α′s−ryk−r

)
. (5.20)

Proof. From the general form of LMM we obtain

1

αs

s∑
r=0

αs−ryk−r =
h

αs

s−1∑
r=0

βs−rfk−r + βsfk.

We rewrite this to

yk = −
s∑
r=1

α′s−ryk−r + hψh(tk−1, Yk−1),

where we implicitly enter this formula as value for yk in the computation of fk.
It remains to realize that this is the first set of d equations in (5.18), and that
the remaining ones are just shifting yi to yi+1.

88

5.3.9 Lemma: Let u(t) be the exact solution of the IVP. For k = s, . . .,
we define the vector Ŷk as the solution of a single step

Ŷk = (A⊗ I)Uk−1 + hFh(tk−1Uk−1),

with correct initial values Uk−1 = (uk−1, uk−2, . . . , uk−s)
T .

If the multistep method is consistent of order p, and f is sufficiently
smooth, then there exist constants h0 > 0 and M such that for h ≤ h0

there holds

‖Yk − Ŷh‖ ≤Mhp+1. (5.21)

Proof. The first component of Yk − Ŷk is the local error of step k, which is of
order hp+1 by the assumption. The other components vanish by the definition
of the method.

5.3.10 Lemma: Assume that an LMM is stable. Then, there exists a
vector norm on Csd such that the operator norm of the matrix A satisfies

‖A⊗ I‖ ≤ 1. (5.22)

Proof. We notice that %̂(x) =
∑
α′s−rx

r is the characteristic polynomial of the
matrix A and thus its eigenvalues are the roots of %̂(x), which has the same
roots as the generating polynomial %(x). By the root test, we know that simple
roots, which correspond to irreducible blocks of dimension one have maximal
modulus one. Furthermore, every Jordan block of dimension greater than one
corresponds to a multiple root, which by assumption has modulus strictly less
than one. It is easy to see that such a block admits a modified canonical form

Ji =


λi 1− |λi|

λi
. . .
. . . 1− |λi|

λi

 .

Thus, the canonical form J = T−1AT has norm ‖J‖∞ ≤ 1. If we define the
norm

‖x‖ = ‖(T−1 ⊗ I)x‖∞,

we obtain the result by

‖(A⊗ I)x‖ = ‖(T−1 ⊗ I)(A⊗ I)x‖∞ = ‖(J ⊗ I)(T−1 ⊗ I)x‖∞
≤ ‖(T−1 ⊗ I)x‖∞ = ‖x‖.

89

5.3.11 Theorem: If a linear multi-step method is stable and consistent
of order p, then it is convergent of order p.

Proof. We reduce the proof to convergence of a one-step method with

Yk = G(Yk−1) = (A⊗ I)Yk−1 + hFh(tk−1, Yk−1). (5.23)

Let Yk−1 and Zk−1 be two initial values for the interval Ik. By the previous
lemma, we have in the norm defined there, for sufficiently small h, and assuming
a Lipschitz constant Lh for Fh :

‖G(Yk−1)−G(Zk−1)‖ ≤ (1 + hLh)‖Yk−1 − Zk−1‖. (5.24)

Thus, the local error ηk = Uk − Ŷk at step k, which by Lemma 5.3.9 is bounded
by Mhp+1, accumulates until step n at most to hp+1(1hLh)n−k.

We have:

‖U1 − Y1‖ ≤ (1 + hLh)‖U0 − y0‖+Mhp+1

‖U2 − Y2‖ ≤ (1 + hLh)2‖U0 − y0‖+Mhp+1
(
1 + (1 + hLh)

)
‖U3 − Y3‖ ≤ (1 + hLh)3‖U0 − y0‖+Mhp+1

((
1 + (1 + hLh) + (1 + hLh)2

))
‖Un − Yn‖ ≤ enhLh‖U0 − Y0‖+

Mhp

Lh

(
enhLh − 1

)
.

5.3.1 Starting procedures

5.3.12. In contrast to one-step methods, where the numerical solution is ob-
tained solely from the differential equation and the initial value, multistep meth-
ods require more than one start value. An LMM with s steps requires s known
start values yk−s, . . . , yk−1. Mostly, they are not provided by the IVP itself.
Thus, general LMM decompose into two parts:

• a starting phase where the start values are computed in a suitable way
and

• a run phase where the LMM is executed.

90

It is crucial that the method of the starting phase provides a suitable order
corresponding to the LMM of the run phase, recall Definition 5.3.7. Moreover,
it should have analog properties to the LMM, like explicit/implicit or applica-
bility to stiff problems. Possible choices for the starting phase include multistep
methods with variable order and one-step methods.

Example 5.3.13 (Self starter). A 2-step BDF method requires y0 and y1 to be
known. y0 is given by the initial value while y1 is unknown so far. To guarantee
that the method has order 2, y1 needs to be locally of order 2 at least

|u(t1)− y1| ≤ c0h2. (5.25)

This is ensured, for example, by one step of the 1-step BDF method.

However, starting an LMM with s > 2 steps by a first-order method and then
successively increasing the order until s is reached does not provide the desired
global order. That is due to the fact that the first step limits the overall con-
vergence order to 2, compare (5.25). Nevertheless, self starters are often used
in practice.

Example 5.3.14 (Runge-Kutta starter). One can use Runge-Kutta methods
to start LMM. Since only a fixed number of starting steps are performed, the
local order of the Runge-Kutta approximation is crucial. For an implicit LMM
with convergence order p and stepsize h one could use an RK method with
consistency order p− 1 with the same stepsize h.

Consider a 3-step BDF method. Thus, beside y0, we need start values y1, y2

with errors less than c0h3. They can be computed by RK methods of consistency
order 2, for example by two steps of the 1-stage Gauß collocation method with
step size h since it has consistency order 2s = 2, see theorem 3.4.14.

Example 5.3.15 (Continuous Runge-Kutta starter). Another option is to use
continuous Runge-Kutta methods and to evaluate the continuous approximation
to obtain the required starting values.

In constrast to Example 5.3.14 one could also use the continuous polynomial
approximation of Gauß collocation to start a 3-step BDF method. One step
with step size 2h of a 2-stage Gauß collocation method would give a polynomial
of degree 2 which is then evaluated in t1 = t0 + h and t2 = t1 + h to obtain
y1, y2. According to Theorem 3.4.11 y1, y2 have the appropriate order.

Remark 5.3.16. In practice not the order of a procedure is crucial but rather
the fact that the errors of all approximations (the start values and all approx-
imations of the run phase) are bounded by the user-given tolerance, compare
Section 2.4. Thus, the step sizes of all steps are controlled using local error es-
timates. Hence, self starting procedures usually start with very small step sizes
and increase them successively. Due to their higher orders RK starters usually
are allowed to use moderate step sizes in the beginning. Generally, LMM are
applied with variable step sizes and orders in practice (see e.g. Exercise 7.2).

91

5.4 LMM and stiff problems

5.4.1 Definition (A-stability of LMM): The linear model difference
equation

s∑
r=0

(
αs−r − zβs−r)yn−r. (5.26)

is obtained by applying an LMM to the model equation u′ = λu and
inserting z = hλ.
The stability region of an LMM is the set of points z ∈ C, for which all
solution sequences {yn} of the equation (5.26) stay bounded for n→∞.
An LMM is called A-stable, if the stability region contains the left
half-plane of C.

5.4.2 Definition: The stability polynomial of an LMM is obtained by
inserting yn = xn into the linear model difference equation to obtain

rz(x) =

s∑
r=0

(
αs−r − zβs−r)xs−r. (5.27)

Remark 5.4.3. Instead of the simple amplification function r(z) of the one-
step methods, we get here a function of two variables. The point z for which
we want to show stability and the artificial variable x from the analysis of the
method.

5.4.4 Lemma: Let {ξ1(z), . . . , ξs(z)} be the set of roots of the stability
polynomial rz(x) as functions of z. A point z ∈ C is in the stability
region of a LMM, if these roots satisfy the root test in corollary 5.2.6.

Proof. The proof is analog to theorem 5.3.4.

5.4.5 Theorem (2nd Dahlquist barrier): There is no A-stable LMM
of order p > 2. Among the A-stable LMM of order 2, the trapezoidal
rule (Crank-Nicolson) has the smallest error constant.

92

k 1 2 3 4 5 6
α 90◦ 90◦ 86.03◦ 73.35◦ 51.84◦ 17.84◦
D 0 0 0.083 0.667 2.327 6.075

Table 5.1: Values for A(α)- and stiff stability for BDF methods of order k.

5.4.1 Relaxed A-stability

5.4.6. Motivated by the fact that there are no higher order A-stable LMM
and by highly dissipative problems, people have introduced relaxed concepts of
A-stability.

5.4.7 Definition: A set is called A(α)-stable, if its stability region
contains the sector{

z ∈ C
∣∣∣∣ <z < 0 ∧

∣∣∣∣=z<z
∣∣∣∣ ≤ tanα

}
.

It is called A(0)-stable, if the negative real axis is contained in the
stability region.
It is called stiffly stable, if it contains the set {<(z) < −D}.

Remark 5.4.8. The introduction of the A(0)-stability is motivated by linear
systems of the form u′ = −Au with symmetric, positive definite matrix A. In
fact one requires there only stability on the real axis because all eigenvalues are
real. Thus, any positive angle α is sufficient.

Similarly A(α)-stable LMM are suitable for linear problems in which high fre-
quently vibration (=λ large) decay fast (−<λ large).

In all cases one observes corresponding properties of the Jacobian matrix ∂uf
for the application of nonlinear problems.

Example 5.4.9. The stability regions of the stable BDF methods are in Fig-
ure 5.3. The corresponding values for A(α)-stability and stiff stability are in
Table 5.1.

93

Figure 5.3: Boundaries of stability regions of BDF1 to BDF6. Unstable region
right of the origin. Zoom on the right

5.5 Predictor-corrector schemes

5.5.1 Definition (Predictor-corrector methods): Assume a pair of
time stepping schemes, one explicit, one implicit,

ŷk = F̂p(yk−1)

yk = Fc(yk−1, yk),

we can use ŷk as initial value for the Newton iteration for yk. In an
extreme case, we let

yk = Fc(yk−1, ŷk),

without any further iteration.

Remark 5.5.2. Predictor-corrector methods were developed strongly around
Adams-Moulton and Adams-Bashforth methods, since the implicit ones have
much smaller error constants. Given that these methods offer no considerable
advantages compared to Runge-Kutta methods, but stability properties and
implementation are weak points, We omit their discussion.

A simple predictor for BDF methods can be obtained, since they are based on
an interpolating polynomial. Thus, we simply extrapolate this polynomial to
the next point in time.

Example 5.5.3. While the predictor-corrector idea sounds reasonable, we have
to be careful with stiff problems, the original reason for using implicit methods.

94

Take again our favorite IVP

u′ = λu, u(0) = 1.

We apply the BDF(1) scheme, namely the implicit Euler method, with step size
1. According to its stability function (3.16), we obtain

y1 =
1

1− λ
.

Accordingly, the interpolating polynomial is

y(t) = (1− t) +
1

1− λ
t = 1 +

λ

1− λ
t.

For the mildly stiff problem λ = −3, we obtain

y1 = 0.25, y2 = 0.0625, ŷ2 = y(2) = −0.5.

Thus, the extrapolated value is already a much worse initial value for a Newton
iteration than using the value from the previous time step.

While this example was particularly chosen to exhibit such failure, it does show
that extrapolation of stiff problems has its pitfalls. Here, we end up with a time
step restriction which is comparable to the stability condition of the explicit
method.

95

Chapter 6

Boundary Value Problems

6.1 Introduction

6.1.1. This chapter deals with problems of a fundamentally different type than
the problems we examined in chapter 1 and which we solved with previous
numerical methods, namely boundary value problems. Here, we have prescribed
values at the beginning and at the end of an interval of interest.

The representation we use here is based primarily on [DB08] and [Ran17].

6.1.2 Definition: A boundary value problem (BVP) is a differential
equation problem of the form: Find u : [a, b]→ Rd, such that

u′(t) = f
(
t, u(t)

)
t ∈ (a, b) (6.1a)

r
(
u(a), u(b)

)
= 0. (6.1b)

6.1.3 Definition: A BVP (6.1) is called linear, if the right hand side f
as well as the boundary conditions are linear in u. It has the form: find
u : [a, b]→ Rd, such that

u′(t) = A(t)u(t) + b(t) ∀t ∈ (a, b) (6.2a)
Bau(a) +Bbu(b) = g. (6.2b)

Remark 6.1.4. Since boundary values are imposed at two different points in
time, the concept of local solutions from definition 1.2.8 is not applicable. Thus,
tricks as going forward from interval to interval, which is for instance done with

96

Euler’s method in the proof of Péano’s theorem, are here not applicable. For
this reason nothing can be concluded with the local properties of the right hand
side f at the points a and b. In fact, it is just possible in a few special cases to
conclude that a solution exists.

6.2 Derivatives of the solutions of IVP with re-
spect to data

6.2.1 Derivatives with respect to the initial values

6.2.1. In order to understand BVP, we have to introduce the notion of the
derivative of the solution to an IVP with respect to its initial values. Our
interest lies in the change of u if the initial value is changed. We will thus
denote in these cases u = u(t; v), where t is the usual “time” variable and v the
initial value, which now is a variable as well. Thus, u(t; v) is the solution to the
IVP

u′(t; v) = ∂
∂tu(t; v) = f

(
t, u(t; v)

)
u(t0; v) = v.

(6.3)

The purpose of this section is the study of the derivative

∂
∂vu(t; v),

which is fundamentally different from ∂/∂tu(t; v). It can be obtained by solving
the variational equation of the original IVP, defined as follows.

6.2.2 Definition: Let F (v) be a function defined on some function
space. Then, the Gâteaux derivative of F at a point v in direction w
with v and w in this function space is defined as

∂

∂w
F (v) = lim

ε→0

F (v + εw)− F (v)

ε
, (6.4)

if this limit exists.
Here, we have used the notation for directional derivatives in Rn, since
this is indeed the character of the Gâteaux derivative.

97

6.2.3 Definition: The variational equation to the first order system
of ODE

u′ = f,

of dimension d is the linear matrix-valued system of ODE

Y ′ = ∇uf
(
t, u(t)

)
Y (6.5a)

for d× d matrices Y . Here is u a solution of the equation (1.4) and

∇uf(t, u) =


∂f1

∂u1
· · · ∂f1

∂ud
...

...
∂fd
∂u1

· · · ∂fd
∂ud


is the matrix of the derivatives of f with respect to the components of
u. The fundamental matrix Y (t; t0) is solution of the IVP to this
equation with

Y (t0) = I. (6.5b)

Remark 6.2.4. The fundamental matrix Y can also be read column by column.
Then each column is a vector-valued function ϕ(i)(t) and solves the IVP

d
dtϕ

(i)(t) = ∇uf
(
t, u(t)

)
ϕ(i)(t),

ϕ(i)(t0) = ei.

Remark 6.2.5. The definition of the fundamental matrix here is consistent
with the one in Definition 1.3.14 for linear equations. Namely, for f(u) = Au,
we have ∇uf(u) = A.

6.2.6 Lemma: For fundamental matrices there hold the relations

Y (t; s) = Y (s; t)−1 (6.6)
Y (t; r) = Y (t; s)Y (s; r), (6.7)

where r, s, t are arbitrary real numbers, such that the solution u of the
original IVP exists on the maximal interval spanned by these numbers.

Proof. In order to prove the first equation, denote by V (τ ; s) the solution to the
IVP

V ′(τ ; s) = ∇uf(τ, u(τ))V (τ ; s), V (s; s) = Y (s; t).

98

Because of uniqueness, we must have V (τ ; s) = Y (τ ; t) for any τ between s and
t, in particular for r = t, such that V (t; s) = Y (t; t) = I. On the other hand, by
linearity, we have V (τ ; s) = Y (τ ; s)Y (s; t), and thus the equation is proven by

I = V (t; s) = Y (t; s)Y (s; t).

Now, assume without loss of generality that s is between r and t. Indeed, if for
instance t is between r and s, multiply equation (6.7) from the left by Y (s; t)
and prove the equation for

Y (s; t)Y (t; r) = Y (s; t)Y (t; s)U(s; r) = Y (s; r).

Take the auxiliary function V (τ ; s) as defined above. By uniqueness, it is equal
to Y (τ ; t) for all τ . But, on the other hand, we have by linearity V (τ ; s) =
Y (τ ; s)Y (s; r), in particular for τ = t.

The statement follows from the definition as a solution of an IVP and the fact
that solutions of linear IVP are linear combinable.

6.2.7 Theorem: Let be f(t, u) continuous in t and continuously dif-
ferentiable in u. Then, the solution u(t; v) of the IVP (6.3) depends
differentiably on the initial value v and the derivative is given by

∂
∂vu(t; v) = Y (t; t0), (6.8)

where Y (t; t0) is the fundamental matrix with respect to the initial time
t0.

Proof. We write the IVP in its full dependence on v as

∂u(t; v)

∂t
= f

(
t, u(t; v)

)
u(t0; v) = v.

From the second equation, we immediately obtain

∂u(t0; v)

∂v
= I.

Assuming differentiability of f with respect to u, the first equation yields

∂

∂v

∂u(t; v)

∂t
=
∂f
(
t, u(t; v)

)
∂v

= ∇uf(t, u(t; v))
∂u(t; v)

∂v
.

Thus, ∂
∂vu solves the IVP (6.3)(

∂

∂v
u

)′
= ∇uf(t, u(t; v))

∂u(t; v)

∂v
.

∂
∂vu solves the same IVP as the fundamental matrix and thus, they coincide.

99

6.2.2 Derivatives with respect to the right hand side func-
tion

6.2.8. We close this section by studying the differential dependence of the so-
lution u(t) of an ODE at time t on the function f(t, u), that is, the derivative
of a value with respect to a function. In order to keep things simple, we reduce
this question to a regular derivative of a function with respect to a real variable
by using the Gâteaux derivative. Back to differential equations, our task is now
to compute the derivative of u(t) with respect to changes in f , denoted as

∂

∂g
u(t) = lim

ε→0

uε − u
ε

=
d

dε
uε(t)

∣∣∣∣
ε=0

, (6.9)

where u and uε respectively solve the IVPs

u′ = f(t, u) u(t0) = u0

u′ε = f(t, uε) + εg(t, uε) uε(t0) = u0.

For this derivative, we have the following theorem.

6.2.9 Theorem: Let f(t, u) and g(t, u) be continuous in their first and
continuously differentiable in their second argument. Let u be the solu-
tion of the IVP u′ = f(u) with u(t0) = u0. Then, the Gâteaux derivative
of u in f with respect to a perturbation g exists and there holds

∂

∂g
u(t) =

∫ t

t0

Y (t; s)g
(
s, u(s)

)
ds. (6.10)

Proof. We set out by devising a differential equation for the Gâteaux derivative
U(t) := d

dεuε(t)
∣∣
ε=0

. The differential equation for u yields

U ′(t) =

(
d

dε
uε(t)

∣∣∣∣
ε=0

)′
=

d

dε
u′ε(t)

∣∣∣∣
ε=0

=
d

dε

(
f
(
t, uε(t)

)
+ εg

(
t, uε(t)

))∣∣∣∣
ε=0

= ∇uf(t, uε)
d

dε
uε(t) + ε∇ug

(
uε(t)

) d
dε
uε(t) + g

(
t, uε(t)

)∣∣∣∣
ε=0

= ∇uf(t, uε)U(t) + g
(
t, uε(t)

)∣∣
ε=0

100

Furthermore, we have

U(t0) =
d

dε
uε(t0) = 0.

According to Lemma 1.3.5, the solution of this initial value problem can be
represented with the integrating factor M(t) as

U(t) = M−1(t)

∫ t

t0

M(s)g
(
s, u(s)

)
ds.

Noticing that M(τ)−1 = Y (τ ; t0), we obtain

u(t) =

∫ t

t0

Y (t; s)g
(
s, u(s)

)
ds

6.3 Theory of boundary value problems

Remark 6.3.1. The very general boundary condition (BC) (6.1b) usually has
more simple forms. Often it is a linear linear boundary condition which we can
note in the following form

Bau(a) +Bbu(b) = g (6.11)

with d×d matrices Ba and Bb as well as a vector g ∈ Rd. Another very common
case is the one of separated boundary conditions, which has the form

ra
(
u(a)

)
= 0, rb

(
u(b)

)
= 0, (6.12)

or

Bau(a) = ga, Bbu(b) = gb. (6.13)

Example 6.3.2. Take the second order differential equation

u′′(t) = −2, ∀t ∈ (0, 1),

with boundary conditions

u(0) = u(1) = 0.

We can deduce from the differential equation that the solution is a parabola
open to the bottom, and we verify easily that

u(t) = t(1− t)

is a solution.

101

Example 6.3.3. Take the first order differential equation

u′(t) = u(t), ∀t ∈ (0, 1),

with boundary values

u(0) = u(1) = 1.

From the theory of the first chapter, we know that the initial value problem
with only the initial value at zero has the unique solution u(t) = et. Thus, this
BVP does not have a solution.

If we changed the condition at the right end of the interval to u(1) = e, the
problem is solvable, albeit we have to admit that this solution seems somewhat
accidental.

Remark 6.3.4. As the examples show, a satisfying theory for the existence of
solutions will be difficult to obtain for any boundary values. For instance, in
the linear case it is obvious that neither Ba, nor Bb may have full rank, because
that would imply the unique existence either of the IVP with Bau(a) = ga or
Bbu(b) = gb, and thus no freedom to match the condition at the other end.

As a consequence we now turn our attention to a “restricted” solution theory
and wonder: assume a solution of the problem exists. Which further conditions
are necessary to obtain well-posedness of the problem in terms of Hadamard
(definition 1.4.1 on page 16).

The key is the following definition which grants us the possibility of the approx-
imation of a solution, at least after a quantification of the neighborhood.

6.3.5 Definition: A solution u(t) of the BVP (6.1) is called locally
unique or isolated, if there is no second solution v(t) of the BVP,
which is arbitrary close to u(t). In mathematical language: there exists
an ε > 0, such that for any two solutions of the BVP there holds

max
t∈[a,b]

|u(t)− v(t)| < ε ⇒ u(t) = v(t) ∀t ∈ [a, b].

102

6.3.6 Lemma: Let be f(t, u) continuous in t and continuously differ-
entiable in u. Let additionally r(x, y) be continuously differentiable and
set

Ba =
∂r(x, y)

∂x

∣∣∣∣
x=u(a),y=u(b)

, Bb =
∂r(x, y)

∂y

∣∣∣∣
x=u(a),y=u(b)

. (6.14)

Let u(t) be a continuously differentiable solution of the BVP (6.1). Then
the derivative of the boundary condition r(u(a), u(b)) with respect to the
function value u(t) inside the interval [a, b] is

E(t) :=
∂r
(
u(a), u(b)

)
∂u(t)

= BaY (a; t) +BbY (b; t), (6.15)

where Y (t; t0) is the fundamental matrix.

Remark 6.3.7. The definition of the matrices Ba and Bb above is consistent
with the usage of the matrix Ba and Bb in equation (6.11).

Proof. We consider the auxiliary function wt(τ ; v) as solution of the IVP with
initial value v in t:

∂

∂τ
wt(τ ; v) = f

(
τ, wt(τ ; v)

)
, wt(t; v) = v.

Choosing v = u(t), we have by uniqueness wt(a; v) = u(a) and u(b) = wt(b; v).
Our task of computing the derivative with respect to u(t) has thus become
computing the derivative with respect to v. The derivative of the boundary
condition can therefore be written as

∂r
(
u(a), u(b)

)
∂u(t)

=
∂r
(
wt(a; v), wt(b; v)

)
∂v

= Ba
∂wt(a; v)

∂v
+Bb

∂wt(b; v)

∂v
= BaY (a; t) +BbY (b; t),

where the last equality is due to Theorem 6.2.7.

Remark 6.3.8. In order to study local uniqueness of solutions and well-posedness
of BVP, we have to change our view on boundary conditions and consider them
as functions of solutions to the differential equation. Thus, we will consider the
function

%(v) := r
(
v(a), v(b)

)
,

mapping solutions of the differential equation to their boundary values. % is a
continuous function, and, as the following theorem shows, even differentiable.

103

6.3.9 Theorem: Let the assumptions of Lemma 6.3.6 hold. If the
matrix E(t) is regular for at least a single value t ∈ [a, b], then it is
regular for all t ∈ [a, b] and the solution u(t) is locally unique.

Proof. First assume that E(t) is regular for some t. Then we have for τ 6= t:

E(τ) = BaY (a; τ) +BbY (b; τ)

= BaY (a; t)Y (t; τ) +BbY (b; t)Y (t; τ) = E(t)Y (t; τ),

where the first factor is regular by assumption, the second one as the funda-
mental matrix of a linear ODE.

Now, we consider the matrix E(t) = Eu(t) as a function of u(t), which is
continuous by assumption. Therefore, if it is regular in u(t), it is regular in
a neighborhood of u(t) of some positive diameter ε. Let now v be a second
solution of the differential equation with |u(t)− v(t)| < ε. Then,

%(u)− %(v) = Eϕ(t)
(
u(t)− v(t)

)
,

where ϕ(t) is between u(t) and v(t) and thus Eϕ(t) is regular. If both functions
solve the BVP, then the left hand side is zero, and thus v(t) = u(t).

Now that we established the local uniqueness of the solution, it yet remains to
show the continuous dependency of data (stability). Here we are in particular
interested, in analogy to the stability theorem, in the derivative of the solution
at time t after perturbations of values on the boundary. For this purpose we
have:

6.3.10 Theorem: Let the assumptions of Lemma 6.3.6 hold and let
u(t) be the solution of the BVP (6.1) with

u(a) = ga and u(b) = gb.

Then, there holds

∂u(t)

∂ga
= E−1(t)Ba,

∂u(t)

∂gb
= E−1(t)Bb. (6.16)

In particular, the conditioning with respect to changes of size ε in the
boundary conditions ga and gb is

δu(t) ≤ εmax
{
‖E−1(t)Ba‖, ‖E−1(t)Bb‖

}
. (6.17)

104

Proof. We demonstrate the proof for the derivative with respect to the left
boundary value. The second equation can be proven the same way. With the
chain rule we obtain

∂u(t)

∂ga
=

∂u(t)

∂r(ga, gb)

∂r(ga, gb)

∂ga

The second derivative is (6.14) Ba. For the first one we notice that E(t) is
the derivative of the inverse mapping of %(u). By application of the implicit
function theorem, we obtain the result.

6.3.11 Theorem: Let f(t, u) and g(t, u) be continuous in t and contin-
uously differentiable in u. Then, the variation of the value u(t) of the
solution u of the boundary value problem

u′ = f(t, u), r
(
u(a), u(b)

)
= 0,

with respect to perturbations f + g is

∂

∂g
u(t) =

∫ b

a

G(t, s)g
(
s, u(s)

)
ds, (6.18)

where

G(t, s) =

{
−E(t)−1BaY (a; s) a ≤ s ≤ t
E(t)−1BbY (b; s) t < s ≤ b

. (6.19)

Proof. We begin by estimating the influence of perturbations of the right hand
side on the boundary values. Using the corresponding Theorem 6.2.9 for IVP,
where we swap the meaning of t and the interval boundaries, we obtain

∂u(a)

∂g
=

∫ a

t

Y (a; s)g
(
s, u(s)

)
ds,

∂u(b)

∂g
=

∫ b

t

Y (b; s)g
(
s, u(s)

)
ds,

By the chain rule and Lemma 6.3.6 and Theorem 6.3.10, we get

∂r
(
u(a), u(b)

)
∂g

=
∂r
(
u(a), u(b)

)
∂u(t)

∂u(t)

∂g
= E(t)

∂u(t)

∂g
.

Assembling everything, we obtain

∂u(t)

∂g
= E(t)−1 ∂r

(
u(a), u(b)

)
∂g

= E(t)−1

(
Ba

∂u(a)

∂g
+Bb

∂u(b)

∂g

)
= E(t)−1

(
Ba

∫ a

t

Y (a; s)g
(
s, u(s)

)
ds+Bb

∫ b

t

Y (b; s)g
(
s, u(s)

)
ds

)
.

105

Remark 6.3.12. Theorems 6.3.9, 6.3.10 and 6.3.11 represent the verification
of the second and third Hadamard conditions. Thus, even if the existence of a
solution for the BVP is not always guaranteed, solutions can be approximated
under certain conditions.

The case for linear boundary value problems is much simpler and we have an
existence an uniqueness result.

6.3.13 Corollary: The linear BVP (6.2) has an unique solution u(t) for
arbitrary data f(t) and g if and only if the d× d matrix

E(a) = Ba +BbY (b; a)

is regular.

Proof. By Theorem 6.3.6 and linearity of the BVP, we deduce that the mapping
% from u(t) to the boundary condition is affine and can be written in the form

r
(
u(a), u(b)

)
= E(t)u(t) + b(t),

where b(t) is some vector in Rd or Cd independent of u. Since everything in
this equation exept u(t) is given, the unique solvability is equivalent to the
invertibility of E(t), which by Theorem 6.3.9 is equivalent to regularity of E(a)
.

6.4 Shooting methods

6.4.1 Single shooting method

Example 6.4.1. We illustrate the shooting method on a simple, scalar example

u′′ = −g, u(0) = 0, u(1) = 0.

What we can solve is the IVP

u′′ = −g, u(0) = 0, u′(0) = s.

The latter has a unique solution u(t;s) for each initial value s. Now it is our
task to find a value s∗, such that u(1; s∗) = 0. With other words, we search for
a root of the function

F (s) = u(1; s).

106

This can be done with an arbitrary, convergent iteration method. For an ex-
ample with the Bisection method. Of course the Newton method would be a
better choice but for that we need to calculate the derivatives of F . This can
be achieved with theorem 6.2.7 by calculating the fundamental matrix Y .

6.4.2 Definition: The single shooting method for the BVP (6.1)
reads as follows: find an initial vector u0 ∈ Rd, such that the solution
u(t) = u(t;u0) of the IVP

∂
∂tu(t;u0) = f

(
t, u(t;u0)

)
, u(a;u0) = u0

satisfies the boundary conditions r
(
u(a), u(b)

)
= 0.

Remark 6.4.3. The task of the shooting method is solved normally with the
help of Newton’s method, which searches for a root (with respect to v) of the
function

F (v) = r
(
v, u(b; v)

)
(6.20)

For Newton’s method we require the partial derivatives

∂

∂v(i)
F (v) = ∂1r

(
v, u(b; v)

)
+ ∂2r

(
v, u(b; v)

) ∂

∂v(i)
u(b; v),

which involves the fundamental matrix Y (b; a) of derivatives of the solution at
point b with respect to the initial values (see Lemma 6.3.6).

6.4.4 Algorithm: The single shooting method with standard Newton
method consists of the following steps:

1. Start with an initial guess v(0) ∈ Rd.

2. For v(n) given, solve the IVP and the associated variation equation

∂
∂tu

(n)(t) = f
(
t, u(n)(t)

)
u(n)(a) = v(n),

∂
∂tY

(n)(t; a) = ∇uf
(
t, u(n)(t)

)
Y (n)(t; a) Y (n)(a; a) = I.

3. Set

v(n+1) = v(n) −
(
Ba +BbY

(n)(b; a)
)−1

r
(
v(n), u(n)(b)

)
(6.21)

4. Stop the iteration if the value r
(
v, u(t;u

(n+1)
0)

)
is sufficiently small,

otherwise repeat from 2.

107

Remark 6.4.5. The IVP in this algorithm usually cannot be solved analytically.
Thus, we have to use what we learned in the previous chapters to choose a time
stepping scheme.

Newton’s method is known to converge locally, not globally. Therefore, a good
initial value is needed for this algorithm to converge. This is the more true,
since the solution of the IVP may grow much faster and may be less stable than
that of the BVP (see homework), and is only approximated. There are two
ways out of this problem: first, a Newton method should never be implemented
without any globalization strategy, which modifies the update to increase the
domain of convergence. The second part of the solution consists in choosing a
method which is more robust than single shooting in the next section.

Remark 6.4.6. Step 2 of the single shooting algorithm requires solving the
variational equation of our original ODE. If f describes a complex nonlinear
process, the computation and implementation of its derivative may be a daunt-
ing and error prone task. This can be avoided by three different algorithmical
tools. For each of them, we describe the main advantages and disadvantages:

Automatic differentiation Software like for instance the module Sacado of
the Trilinos package, has the standard rules of differentiation (Leibniz,
quotient, chain rules, derivatives of polynomials and standard functions)
built in. By implementing f(u) in a conforming way, the software can
automatically generate the code for its derivatives. Clearly, the advantage
is that there is no approximation involved in those derivatives and thus
equation and variational equation are always consistent. On the other
hand, derivatives, which are not simplified analytically, can become fairly
complex. Here, we rely on a good implementation of the automatic differ-
entiation as well as on the optimizing capabilities of the compiler.

Internal numerical differentiation While using a time stepping scheme for
solving the IVP, for example a one-step method, in each time step, we
compute

yk = Φ(yk−1)

as well as approximations

∂

∂yi
yk ≈ Φ(yk−1 + εei)− Φ(yk−1)

ε

with the same integration method Φ and the same step sizes hk. This
approximation can also be replaced by more accurate differentiation for-
mulas. Such an implementation requires d additional evaluations of Φ to
compute the full gradient, which is feasible only for moderately sized d.
Furthermore, the choice of ε is tricky, since the approximation is inac-
curate for large values and unstable for small. Implementations of time

108

stepping schemes which compute both y and its derivatives are available in
the optimization community as well among reseach groups implementing
filtering techniques in stochastic methods.

External numerical diferentiation Here we forget about the variational equa-
tion altogether and approximate by difference quotients the derivative of
u(b) with respect to changes in the initial value directly:

∂

∂vi
u(b) ≈ u(b; v + εei)− u(b; v)

ε
.

In practice, u(b; v + εei) and u(b; v) are computed numerically by any
integration method and in general using different step sizes. The robust
choice of ε is more critical here and the search for a general algorithm to
address this issue has failed. Therefore, this method is only used rarely
nowadays (judgement from [DB08]).

A final remark on computing the Jacobian and its inverse: if an iterative method
is used to solve the linear system in each Newton step, the complete matrix is not
needed, but only the matrix applied to a direction vector. This is something
that can be used to accelerate all methods described above by avoiding the
computation of unneeded values.

6.4.2 Multiple shooting method

Example 6.4.7. Take on the interval [0, 2] the (admittedly somewhat artificial)
boundary value problem

u′ = u2, u(2) = 1,

which has the bounded solution

u(t) =
1

3− t
.

We might be tempted to start our shooting method with v = 1 after realizing
that v = 0 leads nowhere. But then, we get

u(0)(t) =
1

1− t
,

which only exists on the interval [0, 1). Clearly, the single shooting method is
not suited to solve this otherwise harmless BVP.

This observation leads to the idea of applying the shooting method on smaller
subintervals and gluing those together.

109

6.4.8 Definition: Choose a partitioning of the interval [a, b] such that

a = t0 < t1 < t2 < · · · < tm = b.

On each subinterval Ik = [tk−1, tk], k = 1, . . . ,m define the IVP

u′k = f(t, uk), uk
(
tk−1

)
= vk,

The multiple shooting method consists of finding vectors v1, . . . , vm,
such that

vk+1 = uk
(
tk
)

k = 1, . . . ,m− 1,

r(v1, um(b)) = 0.

The function

u(t) = uk(t) for t ∈ Ik

is continuous, solves the ODE, and obeys the boundary conditions.

Remark 6.4.9. The numbering of intervals, vectors, and time partitioning has
been chosen to be consistent with the previous definitions in this class. The
governing entity is the subinterval Ik = [tk−1, tk] with solutions uk and initial
value vk. As a result, the initial values vk are imposed at tk−1.

Other authors have used the time subdivisions tk as governing entity, which leads
to a shift of several of the indices. Whenever reading or writing about multiple
shooting methods, connections between indices must be considered carefully,
since every system will exhibits inconsistencies at some points.

Remark 6.4.10. The multiple shooting method is a typically nonlinear system
of equations of dimension d ·m, where d is the dimension of the ODE and m the
number of subintervals. Nevertheless, the formulation and typically the imple-
mentation hides a much larger number of unknowns involved in the discretiza-
tion of the subdomain solves. We will keep ignoring this inner discretization of
the intervals.

Remark 6.4.11. In order to keep the implementation and presentation simpler,
we introduce an additional shooting vector vm+1 = um(tm). As a result, the
boundary condition in the shooting method simplifies the last conditions to

r
(
v1, vm+1

)
= 0. (6.22)

The advantage becomes obvious, when we compute derivatives for the Newton
method. With the new vector, we compute

∂r
(
v1, vm+1

)
∂v1

= Ba,
∂r
(
v1, vm+1

)
∂vm+1

= Bb.

110

Without, we have to compute

∂r
(
v1, um(b)

)
∂vm

= BbY (tm; tm−1).

6.4.12 Definition: A step of Newton’s method for the multiple shooting
system consists of the update

v(n+1) = v(n) −∇F (v(n))−1F (v(n)), (6.23)

where v(n) = [v
(n)
1 , . . . , v

(n)
m+1]T ,

F (v) =


F1(v1, v2)

...
Fm(vm, vm+1)
Fm+1(v1, vm+1)

 , ∇F (v) =


G1 −I

.
Gm −I

Ba Bb

 , (6.24)

and,

Fk(vk, vk+1) = uk(tk)− vk+1 k = 1, . . . ,m,

Fm+1(v1, vm+1) = r
(
v1, vm+1

)
,

Gk = Y (tk; tk−1) k = 1, . . . ,m.

Remark 6.4.13. Whenever the shooting vectors v = [v1, . . . vm+1]T solve the
multiple shooting equations F (v) = 0, the solution u(t) of the multiple shooting
method is also a solution of the original BVP. This is a consequence of the
continuity enforced by these equations. Therefore, the existence of a solution
to the original BVP implies existence of a solution to the multiple shooting
problem.

6.4.14. We close this section by discussing two important extensions to the
multiple shooting method. First, a system may have boundary values in more
than just the two end points of the einterval of computation. In such a case,
the additional points are included as shooting nodes, such that the boundary
conditions can be applied to the shooting vectors vk instead of solutions of the
initial value problems on subintervals.

The second extension is to problems, where the equation itself has a parameter
which we try to determine by the shooting method. It turns out that both exten-
sions fit very well into concept of multiple shooting and change the underlying
Newton method only slightly.

111

6.4.15 Definition: A multi-point boundary value problem has bound-
ary conditions of the form

r
(
u(t0), u(tk1), u(tk2), . . . , u(tk`)

)
= 0, (6.25)

with a = t0, m = k`, and b = tm A multiple shooting method for such a
problem can be designed by including all values tki into the partitioning
of the time interval. The corresponding shooting function and Jacobian
are

F (v) =


F1(v1, v2)

...
Fm(vm, vm+1)

Fm+1(v1, . . . , vm+1)

 , ∇F (v) =


G1 −I

G2 −I
. . .

. . .
Gm −I

Ba · · · Bki · · · Bb

 .
(6.26)

Here,

Fk(vk, vk+1) = uk(tk)− vk+1 k = 1, . . . ,m,

Fm+1(v1, . . . , vm+1) = r
(
v1, . . . , vm+1

)
,

Gk = Y (tk; tk−1) k = 1, . . . ,m.

6.4.16 Definition: Given a vector p ∈ Rq, a parameter dependent
boundary value problem depending on p has the form

u′ = f(t, u; p),

r
(
u(a), u(b); p

)
= 0.

(6.27)

Here, r(. . .) ∈ Rd+q where d is the dimension of the ODE system.

Remark 6.4.17. Every parameter dependent ODE can be transformed into a
regular ODE by introducing the d+ q-dimensional vector v = (u, p) solving the
ODE

v′ =

(
f
(
t, u(t)

)
0

)
.

Solving it in this form is nevertheless inefficient, since it involves carrying a
differentia lequation for p through all integrators. Instead, we can modify the
shooting method in a way, that we incorporate it directly.

112

6.4.18 Definition: The Jacobian of the Newton method for parameter
dependent BVP is

∇F (v) =


G1 −I P1

.
Gm −I Pm−1

Ba Bb Pm

 . (6.28)

Here,

Pk =
∂uk(tk)

∂p
k = 1, . . . ,m,

Pm =
∂r(. . .)

∂p
,

Gk = Y (tk; tk−1; p) k = 1, . . . ,m.

113

Chapter 7

Second Order Boundary
Value Problems

7.1 2nd order two-point boundary value prob-
lems

7.1.1. We have already seen, that boundary value problems have very different
stability properties than initial value problems. Here, we will discuss a special
class of boundary value problems of the form

−u′′(x) + β(x)u′(x) + γ(x)u(x) = f(x), u(a) = ua, u(b) = ub. (7.1)

In order to make this problem more amenable to mathematical investigation,
we introduce the set

B =
{
u ∈ C2(a, b) ∩ C[a, b]

∣∣∣ u(a) = ua ∧ u(b) = ub

}
.

Then, we can see the left hand side of the differential equation as a differential
operator applied to u and thus mapping B to the set of continuous functions.
Namely, we define

L : B → C[a, b]

u 7→ −u′′ + βu′ + γu.
(7.2)

In addition, we would like to simplify our life and get rid of the inhomogeneous
boundary values ua and ub. To this end, let

uB(x) = ua
b− x
b− a

+ ub
x− a
b− a

,

114

and introduce the new function u0 = u + uB . Then, u0 solves the boudnary
value problem

− u′′0(x) + β(x)u′(x) + γ(x)u(x) = f(x)− β(x)
ub − ua
b− a

− γ(x)uB(x),

u(a) = u(b) = 0.

Thus, it is sufficient to consider the boundary value problem

7.1.2 Definition: Given an interval I = [a, b], find a function

u ∈ V =
{
u ∈ C2(a, b) ∩ C[a, b]

∣∣∣ u(a) = u(b) = 0
}
, (7.3)

such that for a differential operator of second order as defined above and
a right hand side f ∈ C[a, b] there holds

Lu = f. (7.4)

Remark 7.1.3. This definition exhibits a major change in paradigm. Before,
we considered a differential equation as an equation which determines the deriva-
tive of a function in a point. Now, we are looking at a linear system of equations,
albeit one, which is not of finite dimension. This paradigm change will be es-
sential when we consider partial differential equations in future semesters.

On the other hand, the equality in equation (7.4) is understood point-wise, such
that in fact nothing but our point of view has changed.

7.1.4. Again, we subdivide the interval I = [a, b] into subintervals, but the
subdivision does not involve IVP solvers on subintervals, but much more like in
the original subdivision in Definition 2.1.2, the the solution will only be defined
at the partitioning points tk, k = 0, . . . , n.

Thus, like with one-step and multistep methods we will have values y0, y1, . . . , yn,
but the sequence has a defined end at yn due to the right boundary of the in-
terval.

While one-step methods directly discretize the Volterra integral equation in
order to compute a solution at every new step, finite difference methods
discretize the differential equation on the whole interval at once and then solve
the resulting discrete (finite-dimensional) system of equations.

We have accompished the first step and decided that instead of function values
in every point of the interval I, we only approximate u(tk) in the points of the
partition. What is left is the definition of the discrete operator representing the
equation.

115

7.1.5 Definition (Finite differences): In order to approximate first
derivatives of a function u, we introduce the operators

Forward difference D+
h u(x) =

u(x+ h)− u(x)

h
, (7.5)

Backward difference D−h u(x) =
u(x)− u(x− h)

h
, (7.6)

Central difference Dc
hu(x) =

u(x+ h)− u(x− h)

2h
. (7.7)

For second derivatives we introduce the

3-point stencil D2
hu(x) =

u(x+ h)− 2u(x) + u(x− h)

h2
. (7.8)

Remark 7.1.6. The 3-point stencil is the product of forward and backward
difference operators.

D2
hu(x) = D+

h u(x)D−h u(x) = D−h u(x)D+
h u(x).

For simplicity, we only present finite differences of uniform subdivisions. Nev-
ertheless, the definition of the operators can be extended easily to h changing
between intervals.

7.1.7 Definition: A finite difference operator Dα
h is consistent with the

αth derivative of order p, if there holds for any u ∈ Cα+p:

|u(α) −Dα
h | ≤ chp. (7.9)

7.1.8 Lemma: The difference operators have the following consistency
orders

|u′(x)−D+
h u(x)| ≤ ch (7.10)

|u′(x)−Dh
hu(x)| ≤ ch (7.11)

|u′(x)−Dc
hu(x)| ≤ ch2 (7.12)

|u′′(x)−D2
hu(x)| ≤ ch2 (7.13)

Proof. We begin to show consistency of the first two operators by Taylor ex-

116

pansion: for some ξ ∈ (x, x+ h), there holds

u′(x)−D+
h u(x) = u′(x)− u(x+ h)− u(x)

h

= u′(x)−
u(x) + hu′(x) + h2

2 u
′′(ξ)− u(x)

h

= h
2u
′′(ξ).

The same computation can be applied to D−h u(x). It is clear that we need an ad-
ditional symmetry argument for te other two, otherwise their consistency order
would be lower. Therefore, we follow the line of argument that we introduced
in Lemma 5.1.7, and which here reads: a difference operator Dα

h approximating
a derivative of order α is consistent of order p, if and only if it is exact for
all polynomials of degree p + α − 1. We realize this by computing the Taylor
polynomial p(h) of degree p+α−1 and the remainder term involving u(p+α)(ξ).
Then,

Dα
hu(x) =

p(h) + hα+p

(α+p)!u
(p+α)(ξ)

hα
.

Now we employ that the formula is exact for p(h) and thus

u(α)(x)−Dα
hu(x) =

hp

(α+ p)!
u(p+α)(ξ).

We now write

p(ξ) = a0 + a1(ξ − x) + a2(ξ − x)2 + a3(ξ − x)3 + · · ·

The central difference Dc
h is exact for linear polynomials, since ti evaluates to

zero for a constant and Dc
h(ξ − x) = 1. But additionally, we observe

d

dξ
(ξ − x)2

∣∣∣
ξ=x

= Dc
h(ξ − x)2

∣∣∣
ξ=x

= 0.

Thus, the central difference is exact for polynomials of degree 2 and consistent
of second order.

For the 3-point stencil, we observe that D2
hu(x) = 0 for any function u such

that u(x + h) − u(x − h) = u(x), in particular any odd polynomial in ξ − x.
Furthermore,

D2
h(ξ − x)2

∣∣∣
ξ=x

=
h2 − 0 + h2

h2
= 2 =

d2

dξ2
(ξ − x)2

Remark 7.1.9. When applied to the equation u′ = f(t, u) the solutions ob-
tained by forward and backward differences correspond to the explicit and im-
plicit Euler methods, respectively.

117

7.1.10 Definition: The finite difference method for the discretiza-
tion of the boundary value problem Lu = f with homogeneous boundary
values on the interval I = [a, b] is obtained by

1. choosing a partition a = t0, t1, . . . , tn = b with

tk−1 − tk = h = (b− a)/n.

2. only considering the discrete solution valus yk, k = 0, . . . , n.

3. replacing all differential operators by finite differences in tk.

7.1.11 Example: Using the 3-point stencil and central difference, we
obtain from the BVP

−u′′(x) + β(x)u′(x) + γ(x)u(x) = f(x), u(a) = u(b) = 0,

the discrete system of equations

y0 = 0 (7.14)
2yk − yk−1 − yk+1

h2
+ βk

yk+1 − yk−1

2h
+ γkyk = fk k = 1, . . . , n− 1

(7.15)

yn = 0, (7.16)

or short

L̃hy = f (7.17)

Remark 7.1.12. Like our view to the continuous boundary value problem has
changed, the discrete one is now a fully coupled linear system which has to be
solved by methods of linear algebra, not by time stepping anymore. In fact, we
have n+1 variables y0, . . . , yn and n+1 equations, such that here existence and
uniqueness of solutions are equivalent.

118

7.1.13 Example: The linear system obtained in Example 7.1.11 has a
tridiagonal matrix Lh and reads

1
µ1 λ1 ν1

.
µn−1 λn−1 νn−1

1




y0

y1

...
yn−1

yn

 =


0
f1

...
fn−1

0

 , (7.18)

where

λk =
2

h2
+ γk

µk = − 1

h2
− βk

2h

νk = − 1

h2
+
βk
2h

Remark 7.1.14. The first and last row of the matrix Lh are redundant, since
they simply say y0 = yn = 0. They can be eliminated, such that we obtain the
reduced system

Lhy =


λ1 ν1

µ2 λ2
. . .

. νn−2

µn−1 λn−1


 y1

...
yn−1

 =

 f1

...
fn−1

 = fh. (7.19)

In this form, the operator Lh is consistent with L in the sense that it only
describes the differential operator, not the boundary values. Therefore, we will
use this form in our further analysis.

When it comes to implementation, both versions have their merits. Obviously,
the new operator involves less unknowns. On the other hand, the discretization
with boundary unknowns is more straight-forward.

7.2 Existence, stability, and convergence

7.2.1. Since the solution of the discretized boundary value problem is a problem
in linear algebra, we have to study properties of the matrix Lh. The shortest
and most elegant way to prove stability is through the properties of M-matrices,
which we present here very shortly. We are not dwelling on this approach too
long, since it is sufficient for stability, but by far not necessary and constrained
to low order methods.

The fact that Lh is an M-matrix requires some knowledge of irreducible weakly
diagonal dominant matrices, which the author considers as outdated as the
whole concept of m-matrices. We will just quote this result without proof.

119

7.2.2 Definition: An M-matrix A is a quadratic n × n-matrix with
the following properties:

aii > 0, aij ≤ 0, i, j = 1, . . . , n, j 6= i. (7.20)

For the entries cij of A−1 there holds

Cij ≥ 0, i, j = 1, . . . , n. (7.21)

7.2.3 Lemma: The matrix Lh defined above is an M-matrix provided
that

γk ≥ 0, |βk| <
2

h
. (7.22)

Proof. It is clear that these two conditions are sufficient for the first M-matrix
property. The proof of positivity of the inverse is based on irreducible diagonal
dominance, which is too long and too specialized for these notes.

Remark 7.2.4. The finite element method provides much more powerful to
deduce solvability and stability of the discrete problem.

7.2.5 Lemma: Let A be an M-matrix. If there is a vector w such that
for the vector v = Aw there holds

vi ≥ 1, i = 1, . . . , n,

then

‖A−1‖∞ ≤ ‖w‖∞. (7.23)

Proof. Let x ∈ Rn and y = A−1x. Then,

|yi| = |
∑

cijxj |

≤
∑

cij |xj |

≤ ‖x‖∞
∑

cijvj .

Thus,

|yi| ≤ ‖x‖∞
(
A−1v

)
i

= ‖x‖∞
(
A−1Aw

)
i
≤ ‖x‖∞|wi|.

120

Taking the maximum over all i, we obtain

‖A−1‖∞ = sup
u∈Rn

‖A−1u‖∞
‖u‖∞

≤ ‖w‖∞.

7.2.6 Theorem: Assume that (7.22) holds. Then, the matrix Lh defined
in (7.18) is invertible.
Let there furthermore be a constant δ < 2 such that

|βk||b− a| − γk|b− a|2 ≤ δ. (7.24)

Then. the inverse admits the estimate

‖L−1
h ‖∞ ≤

(b− a)2

8− 4δ
. (7.25)

Proof. Take the function

p(x) = (x− a)(b− x) = −x2 + (a+ b)x− ab,

with derivatives p′(x) = a+b−2x and p′′(x) = −2, and a maximum of (b−a)2/4
at x = (a + b)/2. Choose the values pk = p(xk). By consistency, we have and
k = 1, . . . , n− 1

(Lhp)k ≥ 2− βk|b− a|+ γk|b− a|2 ≥ 2− δ.

Thus, the vector with entries wk = pk/(2− δ) can be used to bound the inverse
of Lh by Lemma 7.2.5.

Remark 7.2.7. The assumptions of the previous theorem involve two sets of
conditions on the parameters βk and γk. Condition (7.24) is actually a condition
on the continuous problem. The condition on γk is indeed necessary, as will
be seen when we study partial differential equations. The condition on βk is
not necessary in this form, but a better estimate again requires far advanced
analysis.

The other set of conditions relates the coefficients to the mesh size. Again, the
condition on βk can be avoided as seen in the next example. The condition on
γk is already implied by −γk ≤ (b− a)2, which is a small restriction compared
to (7.24), as soon as the partition has 3 interior points. Thus, it is not crucial.

121

7.2.8 Example: By changing the discretization of the first order term to
an upwind finite difference method, we obtain an M-matrix independent
of the relation of βk and h. To this end define

β(x)D↑hu(x) =

{
β(x)D−h u(x) if β(x) > 0

β(x)D+
h u(x) if β(x) < 0

. (7.26)

This changes the matrix Lh to a matrix L↑h with entries

λk =
2

h2
+
|βk|
h

+ γk

µk = − 1

h2
− max{0, βk}

h

µk = − 1

h2
+

min{0, βk}
h

(7.27)

As a consequence, the off-diagonal elements always remain non-positive
and the diagonal elements remain positive only subject to a condition on
γk. Thus, L

↑
h is an M-matrix independent of the values βk. Nevertheless,

the consistency order is reduced to one.

7.2.9 Theorem: Let I = (a, b) and V according to Definition 7.1.2. Let
u ∈ V ∩ Cp+2(I) be the solution of the 2-point boundary value problem
Lu = f . Let Lh be the matrix of a finite difference approximation
Lhy = fh according to (7.19). Let this method be consistent of order p
and stable in the sense that ‖L−1

h ‖∞ is bounded independent of h.
Then, the method is consistent of order p and for any right hand side f
there is a constant c independent of h such that

max
0≤k≤n

|uk − yk| ≤ chp. (7.28)

Proof. We apply the difference operator Lh to u (as the vector of function values
in the points tk) and y to obtain

Lh(u− y) = (Lh − L)u+ Lu− Lhy = τ + f − f = τ,

where τ = (τ1, . . . , τn−1)T is the vector, which measures the consistency error
(Lh − L)u in each tk. The entries τk are bounded by chp by the consistency
estimate. For the error, there holds

u− y = L−1
h Lh(u− y) = L−1

h τ.

Using the stability assumption, we obtain

‖u− y‖∞ ≤ ‖L
−1
h ‖∞‖τ‖∞ ≤ ch

p,

where the constant c depends on ‖L−1
h ‖∞ and the constant in the consistency

estimate, but not on h.

122

Remark 7.2.10. Finite differences can be generalized to higher order by ex-
tending the stencils by more than one point to the left and right of the current
point. Whenever we add two points to the symmetric difference formulas, we
can gain two orders of consistency.

• • • •︸ ︷︷ ︸
u′+O(h2)

•

︸ ︷︷ ︸
u′+O(h4)

•

︸ ︷︷ ︸
u′+O(h6)

• • • • •︸ ︷︷ ︸
u′′+O(h2)

•

︸ ︷︷ ︸
u′′+O(h4)

•

︸ ︷︷ ︸
u′′+O(h6)

Similarly, we can define one-sided difference formulas, which get us close to mul-
tistep methods. The matrices generated by these formulas are not M-matrices
anymore, although you can show for the 4th order formula for the second deriva-
tive that it yields a product of two M-matrices. While this rescues the theory
in a particular instance, M-matrices do not provide a theoretical framework for
general high order finite differences anymore.

Very much like the starting procedures for high order multistep methods, high
order finite differences cause problems at the boundaries. Here, the formulas
must be truncated and for instance be replaced by one-sided formulas of equal
order.

All these issues motivate the study of different discretization methods in the
next course.

7.3 The Laplacian and harmonic functions

7.3.1. The two-point boundary value problem has a natural extension to higher
dimensions. There, we deal with partial derivatives ∂

∂x ,
∂
∂y , and ∂

∂z . As an
outlook towards topics discussed in classes on partial differential equations and
their numerical analysis, we close these notes by a short introduction at hand
of examples.

123

7.3.2 Definition: the Laplacian in two (three) space dimensions is the
sum of the second partial derivatives

∆u =
∂2

∂x2
u+

∂2

∂y2
u

(
+
∂2

∂z2
u

)
= div(∇u) (7.29)

The Laplace equation is the partial differential equation

−∆u = 0. (7.30)

The Poisson equation is the partial differential equation

−∆u = f. (7.31)

Solutions to the Laplace equations are called harmonic functions.

7.3.1 Properties of harmonic functions

7.3.3 Theorem (Mean-value formula for harmonic functions):
Let u ∈ C2(Ω) be a solution to the Laplace equation. Then, u has the
mean value property

u(x) =
1

rd−1ω(d)

∫
∂Br(x)

u(y) ds, (7.32)

where ∂Br(x) ⊂ Ω is the sphere of radius r around x and ω(d) is the
volume of the unit sphere in Rd.

Proof. First, we rescale the problem to

Φ(r) =
1

rd−1ω(d)

∫
∂Br(x)

u(y) ds =
1

ω(d)

∫
∂B1(0)

u(x + rz) ds.

Then, we notice that

Φ′(r) =
1

ω(d)

∫
∂B1(0)

∇u(x + rz) · z dsz

=
1

rd−1ω(d)

∫
∂Br(x)

∇u(y) · y − x

r
dsy

=
1

rd−1ω(d)

∫
∂Br(x)

∂

∂n
u(y) dsy

=
1

rd−1ω(d)

∫
Br(x)

∆u(y) dy = 0.

124

Between the last two lines, we used the Gauß theorem for the vector valued
function ∇u. Therefore, Φ(r) is constant. Because of continuity, we have

lim
r→0

Φ(r) = lim
r→0

1

rd−1ω(d)

∫
∂Br(x)

u(y) ds = u(x),

which proves our theorem.

7.3.4 Theorem (Maximum principle): Let a function u ∈ C2(Ω)
be a solution to the Laplace equation on an open, bounded, connected
domain Ω. Then, if there is an interior point x0 of Ω, such that for a
neighborhood U ⊂ Ω of x0 there holds

u(x0) ≥ u(x) ∀x ∈ U,

then the function is constant in Ω.

Proof. Let x0 be such a maximum and let r > 0 such that Br(x0) ⊂ Ω. Assume
that there is a point x on ∂Br(x0), such that u(x) < u(x0). Then, this holds for
points y in a neighborhood of x. Thus, in order that the mean value property
holds, there must be a subset of ∂Br(x0) where u(y) > u(x0), contradicting
that x0 is a maximum. Thus, u(x) = u(x0) for all x ∈ Br(x0) for all r such
that Br(x0) ⊂ Ω.

Let now x ∈ Ω be arbitrary. Then, there is a (compact) path from x0 to x in
Ω. Thus, the path can be covered by a finite set of overlapping balls inside Ω,
and the argument above can be used iteratively to conclude u(x) = u(x0).

Corollary 7.3.5. Let u ∈ C2(Ω) be a solution to the Laplace equation. Then,
its maximum and its minimum lie on the boundary, that is, there are points
x,x ∈ ∂Ω, such that

u(x) ≤ u(x) ≤ u(x) ∀x ∈ Ω.

Proof. If the maximum of u is attained in an interior point, the maximum
principle yields a constant solution and the theorem holds trivially. On the
other hand, the maximum principle does not make any prediction on points at
the boundary, which therefore can be maxima. The same holds for the minimum,
since −u is a solution to the Laplace equation as well.

Corollary 7.3.6. Solutions to the Poisson equation with homogeneous boundary
conditions are unique.

125

Proof. Assume there are two functions u, v ∈ C2(Ω) with u = v = 0 on ∂Ω such
that

−∆u = −∆v = f.

Then, w = u − v solves the Laplace equation with w = 0 on ∂Ω. Due to the
maximum principle, w ≡ 0 and u = v.

7.4 Finite differences

7.4.1 Example: The notion of an interval I can be extended to higher
dimensions by a square Ω = I2 or a cube Ω = I3.

(a, a) (b, a)

(b, b)(a, b)

(a, a, a) (b, a, a)

(b, a, b)(a, a, b)

(b, b, a)

(b, b, b)(a, b, b)

(a, b, a)

We call such a square or cube Cartesian, if its edges and faces are
aligned with the coordinate axes.

7.4.2 Example: We consider Dirichlet boundary conditions

u(x) = uB(x), for x ∈ ∂Ω. (7.33)

As in the case or two-point boundary value problems, we can reduce our
considerations to homogeneous boundary conditions uB ≡ 0 by changing
the right hand side in the Poisson equation.

126

7.4.3 Definition: A Cartesian grid on a Cartesian square (cube) con-
sists of the intersection points of lines (planes) parallel to the coordinate
axes (planes).

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

The grid is called uniform, if all lines (planes) are at equal distances.

7.4.4 Definition: The vector of discrete values is defined in points
which run in x- and y-direction. In order to obtain a single index for a
vector in linear algebra, we use lexicographic numbering.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1 2 n−1− 1 n−1

n−1+1 n−1+2 2[n−1]−1 2[n−1]

[n−1][n−3]+1 [n−1][n−3]+2 [n−1][n−2]−1 [n−1][n−2]

[n−1][n−2]+1 [n−1][n−2]+2 [n−1]2−1 [n−1]2

127

7.4.5 Definition: The 5-point stencil consists of the sum of a 3-
point stencil in x- and a 3-point stencil in y-direction. Its graphical
representation is

1

1

-4 1

1

For a generic row of the linear system, where the associated point is not
neighboring the boundary, this leads to

1

h2

[
4yk − yk−1 − yk+1 − yk−(n−1) − yk+(n−1)

]
= fk (7.34)

If the point k is next to the boundary, the corresponding entry from the
matrix must be omitted.

Remark 7.4.6. From now on, we will call the discrete solution uh in order to
avoid confusion with the coordinate direction y.

7.4.7 Lemma: The matrix obtained for the Laplacian on Ω = [0, 1]2 by
the 5-point stencil on a uniform Cartesian mesh of mesh spacing h = 1/n
with lexicographic numbering has the structure

Lh =


D −I
−I D −I

.
−I D −I

−I D

 , D =


4 −1
−1 4 −1

.
−1 4 −1

−1 4



7.4.8 Theorem: The matrix generated by the 5-point stencil is an M-
matrix and the discrete problem

Lhuh = f

is stable in the sense that there is a constant c independent of the grid
spacing h such that

‖L−1
h ‖ ≤ c.

128

Proof. The proof of M-matrix property is identical to the proof for 2-point
boundary value problems, which was omitted there. The same way as there,
the function

w(x, y) = (x− a)(b− x)(y − a)(b− y)

can be employed to show boundedness of ‖L−1
h ‖.

7.4.9 Lemma: The 5-point stencil is consistent of second order.

We summarize:

7.4.10 Theorem: The finite difference methods constructed so far for
the Poisson equation is convergent of second order.

Proof. We apply the analysis of Lemma 7.1.8 in x- and y-directions separately,
obtaining

| ∂
2

∂x2
u(x, y)− u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
| ≤ ch2

| ∂
2

∂y2
u(x, y)− u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
| ≤ ch2,

an conclude consistency of the sum.

7.4.11 Theorem: Let y be the solution to the finite difference method
for the Laplace equation with the 5-point stencil. Then, the maximum
principle holds for y, namely, if there is a point (xk) such that yk ≥ yj
for all j 6= k and yk ≤ yB for any boundary value, then y is constant.

Proof. From equation (7.34), it is clear that a discrete mean value property
holds, that is, yk is the mean value of its four neighbors. Therefore, if yk ≥ yj ,
for all neighboring indices j of k, we have yj = yk. We conclude by following a
path through the grid points.

129

7.5 Evolution equations

After an excursion to second order differential equations depending on a spatial
variable, we are now returning to problems depending on time. But this time,
on time and space. As for the nomenclature, we have encountered ordinary
differential equations as equations or systems depending on a time variable
only, then partial differential equations (PDE) with several, typically a spatial
independent variables. While the problems considered here are covered by the
definition of PDE, time and space are fundamentally different as long as we
stay away from black holes, such that a distinction is reasonable. Therefore, we
introduce the concept of

7.5.1 Definition: An equation of the form

∂tu(t, x) + F (t, u(t, x)) = 0, (7.35)

where u(t, .) is in a function space V on a domain Ω, and F is a differential
operator with respect to the spatial variables x only, is an evolution
equation of first order (in time).
An initial boundary value problem (IBVP) for this evolution equa-
tion completes the differential equation by conditions

u(0, x) = u0 x ∈ Ω (7.36)
u(t, x) = g x ∈ ∂Ω, t > 0. (7.37)

7.6 Fundamental solutions

7.6.1 Definition:

Φ(x) =

{
− 1

2π log|x| d = 2
1

d(d−2)ωd
1

|x|d−2 d ≥ 3,
(7.38)

for x ∈ Rd is the fundamental solution to the Laplace equation. Here,
ωd is the volume of the unit ball in Rd.

130

Appendix A

Appendix

A.1 Properties of matrices

A.1.1 The matrix exponential

Definition A.1.1. The matrix exponential eA of a matrix A ∈ Rd×d is defined
by its power series

eA =

∞∑
k=0

Ak

k!
. (A.1)

Lemma A.1.2. The power series (A.1) converges for each matrix A.

Proof.

Lemma A.1.3 (Properties of the matrix exponential function). The following
relations hold true:

e0 = I (A.2)

eαAeβA = e(α+β)A, ∀A ∈ Rd×d ∀α, β ∈ R, (A.3)

eAe−A = I ∀A ∈ Rd×d. (A.4)

Moreover, eA is invertible for arbitrary quadratic matrices A.

131

A.2 The Banach fixed-point theorem

fixed-point theorem.tex fixed-point theorem.tex

A.2.1 Theorem: Let Ω ⊂ R be a closed set and f : Ω→ Ω a contraction,
i.e. there holds |f(x)− f(y)| ≤ γ|x− y| for a γ ∈ (0, 1).
Then there exists a unique x∗ ∈ Ω such that f(x∗) = x∗.

fixed-point theorem.tex

Proof. Let x0 ∈ Ω and define f(xk) = xk+1. First, we prove existence unsing
the cauchy-criterion. Let k, n ∈ N0 and consider

|xk − xk+m| = |f(xk−1)− f(xk+m−1)| ≤ γ|xk−1 − xk+m−1)|.

Iteratively, we get

|xk − xk+m| ≤ γk|x0 − xm|.

We now write x0 − xm = x0 − x1 + x1 − x2 + · · · + xm−1 − xm. The triangle-
inequality yields the estimate

γk|x0 − xm| ≤ γk|x0 − x1|+ |x1 − x2|+ · · ·+ |xm−1 − xm|
≤ γk|x0 − x1|(1 + γ + γ2 + · · ·+ γm)

≤ γk

1− γ
|x0 − x1|.

As k gets larger the estimate goes to zero.

Concerning uniqueness, let x∗ and y∗ be fixpoints.

|x∗ − y∗| = |f(x∗)− f(y∗)| ≤ γ|x∗ − y∗|

Since γ ∈ (0, 1) we immediately obtain |x∗ − y∗| = 0. Using that |a| = 0 if and
only if a = 0 yields y∗ = x∗. This concludes the proof.

A.3 The implicit and explicit Euler-method

The explicit resp. implicit Euler is given by the one-step method

y1 = y0 + hf(y0) resp. y1 = y0 + hf(y1)

Clearly, the explicit Euler is rather easy to compute since all one needs are
f , h and y0. On the other hand, the implicit Euler is more difficult since for
calculating y1 we need the value of f at y1.

Consider the following visualizations.

132

t

y

t1

u u′(t0)

For the explicit Euler we take u0

and u′0. y1, our approximated so-
lution for u1, is chosen as the in-
tersection point of t1 and g(t) =
y0 + t · u′(t0).

lalalala
t

y

t1

u u′(t1)

For implicit Euler we go back-
wards. On the t1-axis we are
looking for an the affine func-
tion g that fulfills g(0) = u0 and
g′(t1) = f(t1). Then we set y1 =
g(t1).

133

Bibliography

[But96] J. C. Butcher. “A history of Runge-Kutta methods.” In: Appl. Nu-
mer. Math. 20.3 (1996), pp. 247–260. doi: 10.1016/0168-9274(95)
00108-5.

[DB08] P. Deuflhard and F. Bornemann. Numerische Mathematik 2. Gewöhn-
liche Differentialgleichungen. 3. Auflage. de Gruyter, 2008. isbn:
978-3-11-020356-1.

[Heu86] H. Heuser. Lehrbuch der Analysis. Teil 2. 3. Auflage. Teubner, 1986.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential
equations I. Nonstiff problems. Second edition. Vol. 8. Springer Series
in Computational Mathematics. Berlin: Springer, 1993, pp. xvi+528.
isbn: 3-540-56670-8.

[HW10] E. Hairer and G. Wanner. Solving ordinary differential equations
II. Stiff and differential-algebraic problems. Second edition. Vol. 14.
Springer Series in Computational Mathematics. Berlin: Springer-
Verlag, 2010, pp. xvi+614. isbn: 978-3-642-05220-0.

[Ran17] R. Rannacher. Numerik 1: Numerik gewöhnlicher Differentialgle-
ichungen. DOI: 10.17885/heiup.258.342. Heidelberg University Pub-
lishing, 2017.

[Run95] C. Runge. “Über die numerische Auflösung von Differentialgleichun-
gen.” In: Math. Ann. 46 (1895), pp. 167–178.

134

Index

2- and 3-stage Gauss collocation meth-
ods, 67

2- and 3-stage right Radau collocation
methods, 68

2nd Dahlquist barrier, 92
5-point stencil, 128

A(α)-stable, 93
A-stability, 52
A-stability of LMM, 92
A-stable, 52, 92
Adams-Bashforth methods, 79
Adams-Moulton methods, 78
autonomizable, 32
autonomization, 8
autonomous differential equation, 8

B-stable, 53, 67
Banach fixed-point theorem, 19, 60
BDF methods, 79
Boundary condition, 101
boundary condition

separated, 101
boundary value problem, 96
Butcher barriers, 37
Butcher tableau, 29, 29, 30
BVP, see boundary value problem

Cartesian, 126
Cartesian grid, 127
collocation method, 64

Gauß, 67
collocation polynomial, 64
conditioning

AWA, 99
BVP, 104

consistent, 25

continuous solution, 22
Convergence of one-step methods, 27

D-stable, 86
Dahlquist barrier (second), 92
descent method, 74
Diagonal implicit (DIRK), 55
difference equation, 84
difference operator, 81
DIRK, see Runge-Kutta method
Discrete Grönwall inequality, 26
discrete solution, 22
Discrete stability, 26
discretely stable, 27
Dormand-Prince 45, 42

ERK, see Runge-Kutta method
Euler method, 21, 30

modified, 30
evolution equation, 130
exact solution, 22
explicit differential equation, 6
Explicit one-step method, 23, 23

finite difference method, 118
Finite differences, 116
fixed point, 18
fundamental matrix, 15, 98, 107
fundamental solution, 130
fundamental system, 15

Gauß quadrature, 63
Gauß-Collocation method, 67
generating polynomial, 84
generating polynomials, 80
Grönwall, 12
Grönwall’s inequality, 26
gradient method, 72

135

Hadamard conditions, 16, 106
harmonic functions, 124
Heun method, 30
homogeneous, 10, 14, 126

IBVP, 130
implicit Euler method, 50
increment function, 23, 37
initial boundary value problem, 130
initial value problem, 8

stiff, 49
integrating factor, 10
IRK, see Runge-Kutta method
isolated solution, 102
iteration, 71
IVP, see initial value problem

L-stable, 55
Laplace equation, 124
Laplacian, 124
lexicographic numbering, 127
Lh, 81
line search, 72, 73
linear, 14
linear boundary condition, 101
linear differential equation, 10
linear multistep method, 80
Lipschitz condition, 16, 37

one-sided, 46
Lipschitz continuity, 16
LMM, see linear multistep method

local error, 81
Lobatto quadrature, 63
local error, 25, 39, 41, 42, 82

LMM, 81
local solution, 8
local uniqueness BVP, 104
locally unique solution (BVP), 102

M-matrix, 120
matrix exponential, 11
Maximum principle, 125
Mean-value formula for harmonic func-

tions, 124
modified Euler method, 30
monotonic, 49

monotonic function, 46
multiple shooting method, 110
Multistep method, 80

Newton method, 71, 107
Newton method with line search, 73
Newton method with step size control,

73
Newton-Kantorovich, 71

ODE, see ordinary differential equa-
tion

one-sided Lipschitz condition, 46
One-step method

explicit, 23
One-step methods with finite precision,

27
order

of a differential equation, 6
of consistency, 25

order condition (IRK), 62
ordinary differential equation, 6

explicit, 6
linear, 10

homogeneous, 14
Ordinary differential equations, 6

Peano’s continuation theorem, 9
Peano’s existence theorem, 9
Peano’s theorem, 9
Picard-Lindelöf, 18
Picard-Lindelöf theorem, 18
Poisson equation, 124
Predictor-corrector methods, 94

quasi-Newton method, 71

Radau quadrature, 63
Richardson extrapolation, 39
Riemann sphere, 54
Root test, 85
Runge-Kutta method, 55

continuous, 43, 66
diagonal implicit (DIRK), 55
embedded, 41
explicit (ERK), 29, 55
four-stage, 36

136

implicit (IRK), 55
singly diagonal implicit (SDIRK),

55
three-stage, 31

SDIRK, see Runge-Kutta method
separated boundary condition, 101
shooting method

multiple, 109
single, 107

Simplifying order conditions, 62
single shooting method, 107
solution

continuous, 22
discrete, 22
exact, 22
local, 8
locally unique (BVP), 102

Stability, 17
stability function, 51, 55, 56
stability region, 51, 92

of a LMM, 92
stable, 86
steepest descent, 74
step size

constant, 81, 83
stiff, 49
stiff initial value problem, 49
stiffly stable, 93
strongly A-stable, 55

The classical Runge-Kutta method of
4th order, 36

time scales, 49
time step, 22
truncation error, 25

LMM, 81
Two-stage methods, 30

uniqueness
local, 104

upwind, 122

variational equation, 98, 108
VIE

seeVolterra integral equation, 9

Volterra integral equation, 9, 18

well-posed, 16

Y (t; t0), 98

zero stable, 86

137

